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ABSTRACT: In this paper a supervene testing for sequences generated by p-ary 
Generalized Self-Shrinking Generator (pGSSG) is made. Thanks to the Approximate Entropy 
(ApEn) approach certain randomness properties are proved to be possessed by them. In order 
to test the applicability of the generator the pGSSG sequence minimum length in excess of 
which it can be considered that the sequence behaves as truly random is detected. 
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1
. Introduction 

Nowadays, Pseudo-Random Sequences (PRSs) are widely used in such 
applications as computer simulation and modeling, statistics, experimental 
design and cryptography. 

A pseudorandom bit generator is a deterministic method to produce a large 
set of random locking bits, called pseudorandom sequence, from a small set of 
bits, called seed. Pseudorandom sequences are widely used in modern 
communication and information systems because of their characteristics such as 
easier generation in comparison with truly random generators which use 
physical sources; easy reproducibility due to the deterministic nature of the 
algorithm and because they determine the security of widely used in 
cryptography symmetric cryptosystems. 

Variety algorithms have been proposed to produce pseudorandom 
sequences [1], [2]. [3], [11], [14], [16], [17]. The main property that must hold 
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in order to pseudo-random sequence is applicable in cryptography is its 
unpredictability. This defines the following paradox [2]. If a deterministic 
function is unpredictable, it is difficult to prove anything about it, including its 
unpredictability. Some useful principles to construct deterministic functions 
with pseudorandom behavior are expansiveness, nonlinearity and computational 
complexity. 

The mostly used element in pseudorandom bit generator is Linear 
Feedback Shift Registers (LFSRs), because they can generate  
m-sequences. To generate nonlinear sequences researchers utilize structures 
based on LFSR registers, like filter generators, combinatorial generators and 
clock controlled generators. 

Recently some clock controlled generators which use a p-ary PRS instead 
of binary PRS have been proposed [11], [15]. They generalize the work of 
Shrinking Generator [1]. Another similar generator that summarizes the work of 
Self-Shrinking Generator (SSG) [3] is a p-ary Generalized Self-Shrinking 
Generator (pGSSG) [14]. It is built from only a single p-ary LFSR and it is 
proven that it has long period, balance property [13] and good statistical 
characteristics. Moreover it is resistant against exhaustive search and entropy 
attacks [12]. 

In this paper, first we use Approximate Entropy (ApEn) approach to prove 
that sequences generated by p-ary Generalized Self-Shrinking Generator possess 
certain randomness properties. Then, we also use ApEn to detect the minimum 
length in pGSSG sequence excess of which can be considered that the sequence 
behaves as truly random. 

2. Related Work 

In this section we make brief review of algorithm of p-ary Generalized 
Self-Shrinking Generator and Approximate Entropy approach for randomness 
testing. Finally, we describe the ApEn Test. 

2.1. p-ary Generalized Self-Shrinking Generator

The pGSSG generator is proposed in 2011 as a generalization of Meier’s 
Self-Shrinking Generator. Its idea is to implement a simple, fast, and at the same 
time secure way to encrypt stream data. Main difference of the two generators 
consist of bringing in a generalization and use of Extended Galois Field GF(pn).

The schema of pGSSG is given in Figure 1. As seen it consists of a single 
LSFR register A, whose length will be denoted by L. It generates sequence 

0)( iia  with p-ary digits (i.e. 10,)( 0  paa iii ) and 10  Li . The multipliers 
of the feedbacks are given by coefficients Lqqq ,...,, 21 , ]1...,,1,0[  pqL  of the 
primitive polynomial in GF(pL). Each element can remember one p-ary number. 
The register is initialized by p-ary sequence ),,,( 110 Laaa  .
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Figure 1. p-ary Generalized Self-Shrinking Generator 

The pGSSG selects a portion of the p-ary output LFSR sequence by 
controlling the p-ary LFSR itself using six-step algorithm. The p-ary LFSR is 
clocked with period T and its output sequence is split into p-tuples. If the first 
element in the current p-tuple is nonzero the element with number equal to the 
value of that first element is output. In other case the  
p-tuple is discarded. 

The p-ary output sequence could be transformed into a binary one using a 
special scheme for substitution for the zero and non-zero elements.

2.2. Approximate Entropy 

First, in 1991 Steven Pincus [4] suggests approximate entropy (ApEn) as a 
measure of system complexity from at least 1000 given data values for both 
deterministic chaotic and stochastic processes. Then, in 1996 Pincus and Singer 
[6] propose approximate entropy as a characteristic to measure a degree of 
randomness of the tested sequence. Defined in such a way ApEn measures the 
logarithmic frequency with which blocks of length m that are similar remain also 
similar for blocks of length m + 1. And thus, small values of ApEn imply strong 
regularity and alternatively, large values of ApEn indicate irregularity 
(randomness) in tested sequences. After that, in 1997 Pincus and Kalman [5]
propose using ApEn to quantify the extent to which given sequences differ from 
maximal irregularity. 

In 2000, Andrew Rukhin [7] shows that ApEn and his modified version 
converges in distribution to F2-random variable in both cases when the length of 
blocks m is fixed and when m increases to infinity. These facts are the basis of 
statistical tests for randomness through approximate entropy. This idea is 
embedded as part of the empirical tests of NIST statistical tests for randomness 
has been applied to a study of the various random number generators such as 
Data Encryption Algorithm, Advanced Encryption Standard Finalist Candidates,
Secure Hash Algorithm, Digital Signature Algorithm and many others [9], [10]. 
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2.3. Approximate Entropy Test

Approximate Entropy Test [7], [8] checks the frequency of occurrence of 
all possible overlapping mbit patterns in the pseudo-random generator output 
sequence. The purpose of the test is to compare the occurrence frequency of 
overlapping blocks with two consecutive lengths (m and m + 1) with the 
theoretical results for the real random sequence. Test [8] verifies the specific 
zero hypothesis H0: „The sequence to be tested is random“ as it calculates the 
statistical P-value. To conduct the test the following parameters are needed: 
pattern length in bits  m; bit count (length) of generated pseudorandom 
sequence  n and the level of significance D  [0.001, 0.01], which defines the 
acceptable level of error in the test.

To properly perform the approximate entropy test it is necessary to choose 
a value m that satisfies the following requirement: 

¬ ¼ 2log2 � nm ,  (1) 
where ¬ ¼x  is an integer greater than or equal to the real x. 

Let ),,,( 21 nHHHH   is the sequence of bits generated by the pseudorandom 
generator. The Approximate Entropy Test consists of the following steps: 

1. An enlarged sequence H c  is formed: the sequence H  is enlarged by 
adding the first m – 1 bits of H  in the end of the n bit sequence. The result is the 
new sequence ),,,,,( 111  c mn HHHHH  . 

2. All the overlapping mbit blocks are counted. If we denote the count of 
all overlapping blocks with value i and length m bits with m

iN , therefore 2m

different values of m
iN can be found, i = 0, …, 2m1.

3. The relative frequency of occurrence 
n

NC
m
im

i   of all possible 

overlapping m-bit blocks is determined for i = 0, …, 2m1. 
4. The Entropy of the empirical distribution is calculated: 
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5. Steps 1 y 4 are repeated for  
m + 1 instead of m. 

6. The summary test statistics are calculated: 
                                      > @)(2ln *2 mHn  F ,                                                     (3) 
where  
                            � � � �1* )( � mmmH MM                                              (4) 
is the Approximate Entropy of order m [6] and � �1* )0( M H . 

7. Calculate  
                                     P- value = Q(2m-1, F2),                                           (5) 
where Q is the incomplete gamma function ),( xaQ  [8].
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8. Evaluation of the results of the Approximate Entropy test: If the 
calculated P-value is less than the chosen level of significance D, than the test 
sequence is not random. Otherwise, the sequence generated by a pseudorandom 
generator can be considered as truly random. 

3. The Experiments

In this section we describe some experiments carried out to test randomness 
of p-ary GSSG sequences via Approximate Entropy Test and to find the 
minimum length of the pGSSG sequence over which it can be considered as 
truly random. 

3.1. Randomness Testing via Approximate Entropy 

The study is conducted with Galois Field GF(25732) due to the ease of byte 
representation and therefore the possibility of faster software implementation of 
the pGSSG (p = 257). Some primitive feedback polynomials used for 
construction of the pLFSR register (Figure 1) with prime p = 257 and length L =
32 are shown in Table 1. 

As a result 300 different Pvalues have been calculated. The chosen length 
of the pattern is m = 10 and the level of significance is  
D = 0.01. That indicates that one from 100 sequences could be rejected. 

Table 1. Feedback polynomials in pGSSG.

№ Feedback Polynomial
1 x32 + x + 10
2 x32 + 75 x2 + 174 x + 33
3 x32 + 188 x2 + 200 x + 107

In order to determine how much empirical results coincide with the 
theoretical ones the distribution of the P  values evenly is tested for uniformity 
using F2 criteria 
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where Fi is the count of the P-values in the subinterval i and s is the size of the 
interval. The built histograms show that all P  values are distributed equally 
into the 10 subintervals (see Figure 2).
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Figure 2. Histogram of P-values by Approximate Entropy Test 

The calculated generalized  
P-value is  

P-value = � �2,29 2FQ  = 
= Q(4.5, 4.66667) = 0.5308. 

Because the P-value ≥ 0.0001 [9], the sequence generated by pGSSG can 
be considered truly random with confidence level of 99%. 

3.2. Length vs. True Randomness

For finding the minimum length of the pGSSG sequence over which it can 
be considered as truly random the fact [5], [6], [7] that in one long random 
sequence with fixed length of the blocks m the Approximate Entropy H*(m) will 
converge to ln(2) = 0.693147 is used.  

Parts of the results for 3 sequences of all 300 tests are shown in Table 2. 
The deviation O of the Approximate Entropy H* of a pGSSG sequence from the 
truly random sequence 

O = ln(2) – H*(m), (7) 
is calculated. The results are similar for all generated sequences. Therefore the 
dependence of the deviation O when changing the length of the generated 
sequence n is shown on Figure 3. As can be seen from the figure, when the 
length of the sequence is n ≥ 5.105 bits the deviation is almost constant and less 
than 1.103. That fact shows that even shorter pGSSG sequences (less than the 
recommended 106 bits [8]) have close to the truly random Entropy 
characteristics and that can determine the pGSSG generator as random. 

4. Conclusion and future work 

The randomness of sequences produced by p-ary Generalized Self-
Shrinking Generator is tested via approximate entropy. It is proven that  
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Table 2. Approximate Entropy H*(10) and deviation O from the truly random one.

Length n
Sequence 1 Sequence 2 Sequence 3

H*(10) О H*(10) О H*(10) О
40000 0,680055 0,013092 0,680886 0,012261 0,679772 0,013375
80000 0,687088 0,006059 0,68672 0,006427 0,686721 0,006426
120000 0,689034 0,004113 0,688915 0,004232 0,688937 0,00421
160000 0,690028 0,003119 0,689924 0,003223 0,690143 0,003004
200000 0,69058 0,002567 0,690754 0,002393 0,690607 0,00254
240000 0,690976 0,002171 0,691059 0,002088 0,691067 0,00208
280000 0,691305 0,001842 0,691439 0,001708 0,691233 0,001914
320000 0,691493 0,001654 0,691695 0,001452 0,69139 0,001757
360000 0,691715 0,001432 0,691764 0,001383 0,691611 0,001536
400000 0,69185 0,001297 0,691838 0,001309 0,691926 0,001221
440000 0,691969 0,001178 0,691941 0,001206 0,692003 0,001144
480000 0,69209 0,001057 0,692063 0,001084 0,692117 0,00103
520000 0,69217 0,000977 0,692128 0,001019 0,692172 0,000975
560000 0,692268 0,000879 0,692176 0,000971 0,692238 0,000909
600000 0,692319 0,000828 0,692282 0,000865 0,692259 0,000888
640000 0,692375 0,000772 0,692335 0,000812 0,692325 0,000822
680000 0,692411 0,000736 0,692378 0,000769 0,692358 0,000789
720000 0,692467 0,00068 0,692432 0,000715 0,692404 0,000743
760000 0,692513 0,000634 0,692467 0,00068 0,692417 0,00073
800000 0,69254 0,000607 0,692522 0,000625 0,692487 0,00066
840000 0,692567 0,00058 0,69253 0,000617 0,692527 0,00062
880000 0,692592 0,000555 0,692564 0,000583 0,692561 0,000586
920000 0,692618 0,000529 0,692582 0,000565 0,692616 0,000531
960000 0,692639 0,000508 0,692608 0,000539 0,692636 0,000511
1000000 0,692662 0,000485 0,692644 0,000503 0,692654 0,000493

Figure 3. Approximate Entropy Deviation from the truly random one by the 
length of the sequence generated by pGSSG. 
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the pGSSG sequences can be considered as truly random with confidence level 
of 99%. Also, it is shown that the sequences with length more than 5.105 bits 
differ from maximal irregularity (randomness) with less than 1.103, i.e. they 
have truly random properties. 

However, even though this tests show satisfactory results some additional 
practical issues that need to be addressed. The min-entropy, which determines 
the probability of guessing the correct key value at first attempt, should be used 
in order to analyze the problem of finding the secret key (seed) of pGSSG. 
Furthermore, another entropy type – the guessing entropy may help us find the 
average number of needed guesses to determine the key, which is a task for your 
future work.

Acknowledgements 

This paper is supported by the Project BG051PO00l-3.3.06-0003 “Building 
and steady development of PhD students, post-PhD and young scientists in the 
areas of the natural, technical and mathematical sciences”. The Project is 
realized by the financial support of the Operative Program “Development of the 
human resources” of the European social found of the European Union.

References: 

[1] Coppersmith D., H. Krawczyk, Y. Mansour (1993). The shrinking 
generator, Advances in Cryptology – EUROCRYPT’93, vol. 773 of LNCS, 
Berlin, Springer-Verlag, 22-39. 

[2] Lagarias, J. C. (1993). Pseudorandom numbers. Statistical Science, 8(1), 
31-39.

[3] Meier W., O. Staffelbach, (1995). The self-shrinking generator. In A.De 
Santis, editor, Advances in Cryptology – EUROCRYPT ’94, vol.950 of 
LNCS, Berlin, Springer-Verlag, 205-214. 

[4] Pincus, S. M. (1991). Approximate entropy as a measure of system 
complexity. Proceedings of the National Academy of Sciences, 88(6), 
2297-2301. 

[5] Pincus, S., and Kalman, R. E. (1997). Not all (possibly) “random” 
sequences are created equal. Proceedings of the National Academy of 
Sciences, 94(8), 3513-3518. 

[6] Pincus, S., and Singer, B. H. (1996). Randomness and degrees of 
irregularity. Proceedings of the National Academy of Sciences, 93(5), 
2083-2088. 

[7] Rukhin, A. L. (2000). Approximate entropy for testing randomness. 
Journal of Applied Probability, 37(1), 88-100. 

[8] Rukhin, A., Soto, J., Nechvatal, J., Smid, M., and Barker, E. (2001). A
statistical test suite for random and pseudorandom number generators for 

JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 5, 2014



JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 5, 201484

cryptographic applications. BOOZ-ALLEN AND HAMILTON INC 
MCLEAN VA. 

[9] Soto, J. (1999, October). Statistical testing of random number generators. 
In Proceedings of the 22nd National Information Systems Security 
Conference (Vol. 10, No. 99, p. 12). Gaithersburg, MD: NIST.

[10] Soto, J., and Bassham, L. (2000). Randomness testing of the advanced 
encryption standard finalist candidates. BOOZ-ALLEN AND 
HAMILTON INC MCLEAN VA. 

[11] Tashev, T., Bedzhev, B., Tasheva, Zh. (2007). The Generalized 
Shrinking-Multiplexing Generator, ACM International Conference 
Proceeding Series 285, Article number 48, Proceedings of the 2007 
international conference on Computer systems and technologies 
CompSysTech '07. 

[12] Tasheva A. (2012). Some cryptanalysis of a p-ary generalized self-
shrinking generator. In Proceedings of the 13th International Conference 
on Computer Systems and Technologies (CompSysTech’12), Boris 
Rachev and Angel Smrikarov (Eds.). ACM, New York, NY, USA, 126-
133.

[13] Tasheva A. T., Nakov O., Zh. A. Tasheva. (2013). About balance 
property of the p-ary generalized self-shrinking generator sequence. In 
Proceedings of the 14th International Conference on Computer Systems 
and Technologies (CompSysTech '13), Boris Rachev and Angel 
Smrikarov (Eds.). ACM, New York, NY, USA, 299-306. 

[14] Tasheva A. T., Zh. N. Tasheva, A. M. Petrov (2011). Generalization of 
the Self-Shrinking Generator in the Galois Field GF(pn), Advances in 
Artificial Intelligence, vol. 2011, Article ID 464971, 10 pages, 2011. 
doi:10.1155/2011/464971 

[15] Tasheva Zh. N. (2012). Design and Analysis of 3-ary Generalized 
Shrinking Multiplexing Generator, International Journal of Advance in 
Communication Engineering 4 (2), 129-140. 

[16] Tsankov, T., Trifonov, T., and Staneva, L. (2013). A Survey of Phase 
Manipulated Signals with High Structural Complexity and Small Loses 
after Processing with Mismatched Filters. Journal Scientific & Applied 
Research, 4, 88-97.

[17] Tsankov, T., Trifonov, T., and Staneva, L. (2013). An algorithm for 
synthesis of phase manipulated signals with high structural complexity. 
Journal Scientific & Applied Research, 4, 80-87.

JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 5, 2014


