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Abstract. High dimensional integrals are usually solved with Monte Carlo algorithms 
and quasi Monte Carlo algorithms. We are doing numerical testing which compare low 
discrepancy and Monte Carlo algorithms. It is well known that Sobol algorithm has some 
advantageous over the other low discrepancy sequences, that’s why we use this algorithm for 
our numerical example. The obtained relative error confirms this superiority of the presented 
Monte Carlo and quasi Monte Carlo algorithms even when small number of sample points are 
used. It is very interesting that the presented high dimensional integral gives very low relative 
error even for computational time less than one second which shows the great importance of 
the developed algorithms. 
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Introduction 
The Monte Carlo method is a widely used tool in many fields of science. 

It is well known that Monte Carlo methods give statistical estimates for the 
functional of the solution by performing random sampling of a certain random 
variable whose mathematical expectation is the desired functional. 

Monte Carlo methods are methods of approximation of the solution to 
problems of computational mathematics, by using random processes for each 
such problem, with the parameters of the process equal to the solution of the 
problem. The method can guarantee that the error of Monte Carlo 
approximation is smaller than a given value with a certain probability [1]. 

An important advantage of the Monte Carlo methods is that they are 
suitable for solving multi-dimensional problems, since the computational 
complexity increases linearly and not exponentially with the dimensionality. An 
important advantage of the method is that it allows to compute directly 
functionals of the solution with the same complexity as to determine the solution. 
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In such a way this class of methods can be considered as a good candidate for 
treating innovative problems related to modern areas in quantum physics and 
finance.  

In the last few years new approaches have been developed that outperform 
standard Monte Carlo in terms of numerical efficiency. It has been found that 
there can be efficiency gains in using deterministic sequences rather than the 
random sequences which are a feature of standard Monte Carlo. These 
deterministic sequences are carefully selected so that they are well dispersed 
throughout the region of integration. Sequences with this property are known as 
low discrepancy sequences. These sequences are often more efficient than 
standard Monte Carlo in evaluating high dimensional integrals if the integrand 
is sufficiently regular and for many finance applications this is the case. 
Applications of low discrepancy sequences to finance problems have been 
discussed by Boyle, Broadie and Glasserman (1997), Cashisch, Morokoff and 
Owen (1997), Joy, Boyle and Tan (1996), Ninomiya and Tezuka (1996), Tan and 
Boyle (2000) and Paskov and Traub (1995). The Monte Carlo method has 
proven to a very useful tool for nu- merical analysis, particularly when the 
number of dimensions ranging from medium to large. Such problems occur in a 
broad range of applications in science, physics and engineering. In recent years 
the Monte Carlo method has also become a popular computational device for 
problems in finance.  

Multidimensional numerical quadratures are of great importance in many 
practical areas, ranging from atomic physics to finance [2],[3]. Monte Carlo 
simulation and quasi- Monte Carlo methods are the prevailing methods used to 
solve multi dimensional problems in different areas. Both methods do not suffer 
from the dimensional effect. The Monte Carlo method is known to be only 
accurate with a tremendous amount of scenarios since its rate of convergence is 
O(N −1/2). Quasi Monte Carlo methods use deterministic sequences that have 
better uniform properties measured by discrepancy. They are usually superior 
to the Monte Carlo method as they have a convergence rate of ((log N)d/N ), 
where N is the number of samples and d is the dimensionality of the 
problem under consideration.  

 
Monte Carlo algorithms for numerical integration  

Consider the problem of approximate integration of the multiple integral: 

 
where    . 
For small values of d, numerical integration methods such as Simpson’s rule or 
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the trapezoidal rule can be used to approximate the integral. These methods, 
however, suffer from the so-called curse of dimensionality and become 
impractical as d increases.  

The crude Monte Carlo method has rate of convergence O(N −1/2) which 
is independent of the dimension of the integral, and that is why Monte Carlo 
integration is the only practical method for many high-dimensional problems. 
Much of the efforts to improve Monte Carlo are in construction of variance 
reduction methods which speed up the computation or to use quasi-random 
sequences [1]. A quasi-random or low discrepancy sequence, such as the Faure, 
Halton, Hammersley, Niederreiter or Sobol sequences, is ”less random” than a 
pseudorandom number sequence, but more useful for such tasks as 
approximation of integrals in higher dimensions, and in global optimization. 
This is because low discrepancy sequences tend to sample space ”more 
uniformly” than random numbers. We modify the algorithm for Sobol sequence 
that is an adapation of the INSOBL and GOSOBL routines in ACM TOMS 
Algorithm 647 and ACM TOMS Algorithm. The original code can only compute 
the ”next” element of the sequence. The revised code allows the user to specify 
the index of the desired element. The algorithm has a maximum spatial 
dimension of 40 since MATLAB doesn’t support 64 bit integers. A remark by 
Joe and Kuo shows how to extend the algorithm from the original maximum 
spatial dimension of 40 up to a maximum spatial dimension of 1111. The 
FORTRAN90 and C++ versions of the code has been updated in this way, but 
updating the MATLAB code has not been simple, since MATLAB doesn’t 
support 64 bit integers. We use algorithm that generates a new quasirandom 
Sobol vector with each call. The routine adapts the ideas of Antonov and Saleev 
. The parameters of the algorithm are an integer DIMNUM , the number of 
spatial dimensions. The algorithm starts with integer SEED, the ”seed” for the 
sequence. This is essentially the index in the sequence of the quasi-random 
value to be generated. On output, SEED has been set to the appropriate next 
value, usually simply SEED + 1. If SEED is less than 0 on input, it is treated 
as though it were 0. An input value of 0 requests the first (0-th) element of the 
sequence. Output is the real QUASI(DIMNUM ), the next quasi-random vector 
[5].  

Consider an example with d = 40. In order to apply such formulae, we 
generate a grid in the d-dimensional domain and take the sum (with the 
respective coefficients according to the chosen formula) of the function 
values at the grid points. Let a grid be chosen with 10 nodes on the each of the 
coordinate axes in the d-dimensional cube G = [0, 1]d. In this case we have to 
compute about 1040 values of the function  f(x). Suppose a time of 10−7s is 
necessary for calculating one value of the function.  

Therefore, a time of order 1033s will be necessary for evaluating the 
integral (remember that 1 year = 31536×103s, and that there has been less 
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than 9×1010s since the birth of Pythagoras). So to compute 40 dimensional 
integral with deterministic formula we need 1033/31556926 = 3 × 1025 years. 
Consider a plain Monte Carlo algorithm for this problem with a probable error 
of the same order. The algorithm itself consists of generating N pseudo 
random values (points) (PRV) in G; in calculating the values of f(x) at these 
points; and averaging the computed values of the function. For each 
uniformly distributed random point in G we have to generate 40 random 
numbers uniformly distributed in [0, 1]. The probable error is: 

 
From above equations and using that ǫ ≤ cMh3 we obtain  

  
Suppose that the expression in front of h−6 is of order 1. For our example 

h = 0,1, we have N ≈ 106; hence, it will be necessary to generate 40 × 106 = 4 
× 107 PRV. Usually, two operations are sufficient to generate a single PRV. 
Suppose that the time required to generate one  PRV is the same as that for 
calculating the value of the function at one point in the domain. Therefore, in 
order to solve the problem with the same accuracy, a time of  4 × 107 × 2 × 107 
≈ 8s will be necessary. The advantage of the Monte Carlo algorithms to solve 
such problems is obvious. 

 Numerical example  
We will test the two methods for evaluating the following 40 dimensional 
integral: 

 
For the crude Monte Carlo algorithm we use the Mersenne Twister number 
generator. The algorithm used by this method, developed by Nishimura and 

Matsumoto, generates double precision values in the closed interval [2−53, 
1−2−53], with a period of (219937 −1)/2. As can been seen from the table for 40 
dimensional integral, the low discrepancy sequence produces more rapid 
convergence, and lower errors, than the pseudorandom sequence. This is as 
anticipated since the pseudo randomly obtained averages converge at the rate 
O(N−1/2),while the quasi randomly obtained averages converge at a rate closer 
to O(N−1).  For larger number of points, the advantage of using either 
pseudorandom or quasi-random methods in place of more conventional 
quadrature formulas should become even more pronounced.  
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Table 1: The relative error for 40  dimensional integral 
N Sobol time Crude time 
1000 1.20e-3 0.07 4.64e-2 0.001 
10000 1.33e-3 0.69 1.20e-2 0.02 
100000 6.33e-5 6.60 2.05e-3 0.19 
1000000 5.46e-6 72.7 1.75e-3 1.47 
10000000 1.17e-7 782.3 8.25e-4 14.81 

 
Table 2: Computational complexity for 40 dimensional integral 

 
time in seconds Crude Sobol 
1 1.52e-3 8.86e-4 
5 1.16e-3 7.65e-5 
10 3.66e-4 5.03e-5 
20 3.75e-5 8.75e-6 
60 2.70e-5 3.41e-6 

      

 
Fig. 1. Relative error and computational time for 40 dimensional integral with 

Monte Carlo and quasi Monte Carlo methods
 

It is very interesting that an error of 1.17e − 7 can be achieved for 40 
dimensional integral. If someone need an error of 1% this can be done in less 
than a second which is impressive results and it is of great importance for applied 
scientists.  It can be seen that only for 1s the two methods under consideration 
gives relative error of 1.52e − 3 and 8.86e − 4 respectively which is already a 
sufficient accuracy. For 60s the results are even more precise.  

JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 10, 2016 15



Conclusion 
In this paper we analyze the performance of quasi Monte Carlo and crude 

Monte Carlo algorithm for multidimensional integrals. The Sobol quasi-random 
sequence is compared with the pseudorandom sequence and the results are very 
precise even for 40 dimensional integral, which shows the strength of the 
presented algorithm for higher dimension d ≤ 40. This multidimensional integral 
can be applied to various problems where data is taken in randomized way [4].  
They are often used in physical problems and are most useful when it is difficult 
or impossible to use other mathematical methods. These improved methods are 
the only possible algorithms for high dimensional integrals, because we see that 
the deterministic algorithms need an impossible amount of time and become 
impractical. 
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