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ABSTRACT: In this paper we make a numerical study between Hammersley quasi-
random sequence and Fibonacci based lattice rule  for computing multidimensional integrals. 
The two methods have not been compared before and both are recommended in case of 
smooth integrands. The two quasi-Monte Carlo approaches are completely different thus it is 
a question of interest which one of them outperforms the other. We consider a case study with 
smooth integrand functions of different dimensions. A comparison with Sobol sequence for a 
fixed computational time is given. 
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Introduction 
High dimensional integrals are usually solved with Monte Carlo algorithms 

and quasi-Monte Carlo algorithms. The crude Monte Carlo method has rate of 
convergence   O(N −1/2) which is independent of the dimension of the 
integral, and that is why Monte Carlo integration is the only practical method 
for many high-dimensional problems. Much of the efforts to improve Monte 
Carlo are in construction of variance reduction methods which speed up the 
computation or to use quasi-random sequences [4]. Quasi-Monte Carlo methods 
use deterministic sequences that have better uniform properties measured by 
discrepancy [12]. They are usually superior to the Monte Carlo method as 
they have a convergence rate of ((log N)s/N ), where N is the number of 

18 JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 12, 2017



samples and s is the dimensionality of the problem under consideration.  
A low-discrepancy sequence is a sequence with the property that for all 

values of N, its subsequence x1, ..., xN has a low discrepancy. The discrepancy of 
a sequence is low if the proportion of points in the sequence falling into an 
arbitrary set B is close to proportional to the measure of B, as would happen on 
average (but not for particular samples. Specific definitions of discrepancy differ 
regarding the choice of B (hypersheres, hypercubes, etc.) and how the 
discrepancy for every B is computed (usually normalized) and combined 
(usually by taking the worst value). Low-discrepancy sequences are also called 
quasi-random or sub-random sequences, due to their common use as a 
replacement of uniformly distributed random numbers [11].  The "quasi" 
modifier is used to denote more clearly that the values of a low-discrepancy 
sequence are neither random nor pseudorandom, but such sequences share some 
properties of random variables and in certain applications such as the quasi-
Monte Carlo method their lower discrepancy is an important advantage. 
  A low discrepancy sequence, such as the Faure, Halton, Hammersley, 
Niederreiter or Sobol sequences, is ”less random” than a pseudorandom 
number sequence, but more useful for such tasks as approximation of integrals 
in higher. This is because low discrepancy sequences tend to sample space 
”more uniformly” than random numbers. It is a question of interest to know which 
sequence outperforms the other [10].  
Lattice rules are based on the use of deterministic sequences rather than random 
sequences. They are a special type of so-called low discrepancy sequences. It is 
known that as long as the integrand is sufficiently regular, lattice rules 
outperform the basic Monte Carlo method and most of the other types of low 
discrepancy sequences [1]. 
 

Quasi Monte Carlo algorithms for numerical integration  
Because any distribution of random  numbers can be mapped onto a uniform 

distribution, and subrandom numbers are mapped in the same way, this article 
only concerns generation of subrandom numbers on a multidimensional uniform 
distribution. There are constructions of sequences known such that for their 
discrepancy: 

 
Here C is a certain constant, depending on the sequence. These sequences are 
believed to have the best possible order of convergence.  
The standard M-dimensional Hammersley sequence [6] based on a number of 
samples N is simply composed of a first component of successive fractions 0/N, 
1/N, ..., N/N, paired with M-1 1-dimensional van der Corput sequences [19], 
using as bases the first M-1 primes. The van der Corput sequence generates a 
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sequence of points in [0,1] which never repeats. For positive index I, the 
elements of the van der Corput sequence are strictly between 0 and 1. In 
particular, the I-th element of the van der Corput sequence is computed by 
writing I in the base B (usually 2) and then reflecting its digits about the decimal 
point. Let b1,...,bs-1 be coprime positive integers greater than 1. For given s and 
N, the s-dimensional Hammersley set of size N is defined by [7] 

 
for n = 1, ..., N. Then the discrepancy of the set is obtained in [10]: 

 
where C is a constant depending only on b1, ..., bs−1. The above estimation for 
the discrepancy of the Hammersley sequence means that this is a low 
discrepancy sequence. The parameters of the algorithm are input: the integer I, 
the index of the element of the sequence 0 <= I; integer M, the spatial 
dimension, 1 <= M <= 100 and integer N, the "base" for the first component 1 
<= N.  Output is real R(M), the element of the sequence with index I. 
The monographs of Sloan and Kachoyan [15], Niederreiter [13],  Hua and Wang 
[10], Wang and Hickernell [20] and Sloan and Joe [14] provide comprehensive 
expositions of the theory of integration lattices. We implemented a specific 
lattice rule and compared its performance with an implementation of 
Hammersley sequence over integrals of smooth functions. 
Let n be an integer, and a =( a1,...,as) be an integer vector modulo n. A set of the 
form [19]  

 
is called a lattice point set, where {x} denotes the fractional part of x. The vector 
a is called a lattice point or generator of the set. As one can see, the formula for 
the lattice point set is simple to program. The difficulty lies in finding a good 
value of a, such that the points in the set are evenly spread over the unit cube. 
The choice of good generating vector, which leads to small errors, is not trivial 
[8]. Complicated methods from theory of numbers are widely used, for example 
Zaremba’s index or error of the worst function. We consider the following 
generating vector based on generalized Fibonacii numbers of corresponding 
dimensionality: 

 
where 

 
with initial conditions 
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for l=0,1,… 
The discrepancy of the set obtained by using the vector described above is 
asymptotically estimated in [9].  
The number of calculation required to obtain the generating vector is       O(ln 
nl). The generation of a new point requires constant number of operations, thus 
to obtain a lattice set of the described kind consisting of nl points, O(ln nl) 
number of operations are necessary. However the discrepancies of the lattice 
point sets obtained by these two methods have larger upper bounds than those 
obtained by Korobov's method [1]. 
In experiments in the next section we use the well known quasi-random 
sequence of Sobol which is given as reference. They were first introduced by the 
Russian mathematician Ilya M. Sobol in 1967 [15] and later described in [16]. 

We use an adaptation of the INSOBL and GOSOBL routines in ACM TOMS 
Algorithm 647 [3] and ACM TOMS Algorithm 659 [2]. The original code can 
only compute the "next" element of the sequence. The revised code allows the 
user to specify the index of the desired element [18]. 

Numerical example and results 

We will test the performance of the Hammersley sequence (HAM) and a 
particular lattice rule with generating vector, based on the generalized 
Fibonacci numbers of the corresponding dimensionality (FIBO) on 
multidimensional integrals of smooth functions of different dimensions. 
A comparison with Sobol quasi-random sequence (SOBOL) for a 
preliminary given computational time will be given. We will be 
interested which of the methods gives lowest relative errors for 1 minute. 
We consider  examples of 4, 10 and 25 dimensional integrals. 

Example 1. 

 

Exampe 2. 
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Example 3. 
 

 
 

Table 1: The relative error for 4 dimensional integral 
N FIBO Time,s HAM Time,s 
100 1.39e-1 0.001 2.44e-2 0.01 
1000 9.27e-3 0.01 4.91e-3 0.17 
10000 7.90e-4 0.09 7.84e-4 1.61 
100000 3.40e-4 1.10 7.17e-5 12.4 
1000000
0 

2.68e-5 5.79 1.66e-6 74.7 
 

Table 2: The computational time for 4 dimensional integral 
 

time in seconds FIBO SOBOL HAM 
0.1 9.27e-3 5.17e-3 2.44e-2 
1 3.26e-4 5.37e-5 1.22e-3 
10 7.21e-6 1.43e-5 9.18e-5 
60 9.10e-8 2.68e-7 3.61e-6 

 
Table 3: The relative error for 10 dimensional integral 

N FIBO Time,s HAM Time,s 
100 8.35e-1 0.001 2.30e-1 0.01 
1000 1.47e-1 0.08 1.55e-2 0.25 
10000 4.21e-2 0.12 2.34e-3 0.98 
100000 1.02e-2 0.91 7.55e-4 12.08 
1000000
0 

1.08e-3 6.27 1.56e-5 124.6 
 

Table 4: The computational time for 10 dimensional integral 
 

time in seconds FIBO SOBOL HAM 
0.1 9.82e-2 1.06e-2 5.94e-2 
1 4.58e-2 9.15e-2 1.24e-3 
10 1.37e-2 9.93e-4 9.46e-4 
60 1.28e-3 1.38e-4 6.65e-5 
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Table 5: The relative error for 25 dimensional integral 
N FIBO Time,s HAM Time,s 
1000 9.84e-1 0.03 4.49e-1 0.17 
10000 7.10e-1 0.11 1.53e-1 2.27 
100000 1.97e-1 0.81 1.65e-4 12.55 
1000000
0 

9.09e-2 6.40 9.16e-5 147.1 
 

Table 6: The computational time for 25 dimensional integral 
 

time in seconds FIBO SOBOL HAM 
0.1 7.10e-1 2.50e-1 4.22e-1 
1 1.21e-1 1.09e-1 1.13e-1 
10 8.86e-2 1.85e-2 2.43e-2 
60 7.13e-2 9.21e-3 2.78e-3 

 
In the Table 1,3 and 5 are presented the relative error for the 4,10 and 25 

dimensional integrals with Fibonacci lattice sequence (FIBO) and Hammersley 
quasi-random sequence (HAM) for a fixed number of points. In table 2,4,6 are 
presented the relative errors for 4,10 and 25 dimensional integrals with Sobol 
quasi-random sequence (SOBOL), FIBO and HAM for a fixed computational 
time which is a measure of the computational complexity. Obviously FIBO has 
the lowest computational complexity and is the fastest algorithm, while HAM 
and SOBOL are slower, because they need an additional time for generating the 
corresponding low discrepancy sequences. As can been seen from the results for 4 
dimensional integral, the low discrepancy sequence of Hammersley produces 
more rapid convergence, and lower errors, than the Fibonacci lattice sequence 
for a given number of realizations of the random variable-see Table 1, but for a 
fixed computational time- Fibonacci sequence gives better results- see Table 2. 
In Table 2 Fibonacci gives better results than Hammersley sequence for a fixed 
computational time and better results than Sobol sequence with increasing the preliminary 
given time. Therefore Fibbonaci lattice rule is the best choice for low dimensional 
integrals- for  one minute it gives relative error of  9.10e-8 which is better than Sobol 
and Hammersley sequences. For the 10-dimensional integral Hammersley gives lower 
relative errors than the Fibonacci algorithm- see Table 3. For a preliminary given time in 
seconds Sobol and Hammersley gives better results than Fibonacci-see Table 4. It is 
interesting that for 1 minute Hammersley gives 6.65e-5, which is better than Sobol- 
1.38e-4 and far better than FIBO- 1.28e-3. This means that for mid and high 
dimensions Hammersley sequence gives more reliable results than FIBO and it 
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can be successfully compete with one of the best quasi-random sequences of 
Sobol.  For 25- dimensional integral as expected FIBO produces the worst 
results, while Hammersley sequence is more appropriate for higher dimensions- 
see Table 5. For a fixed computational time Hammersley again gives lower 
relative errors than Sobol- for 1 minute Hammersley gives 2.78e-3 which is 
better than Sobol with 1 order and  better than FIBO with 2 orders- see Table 6. 
For higher dimensions the errors can not be small. However, Hammersley and 
Sobol sequences gives sufficient accuracy. 

 
Conclusion 
In this paper we analyze the performance of different quasi-Monte Carlo 

methods for multidimensional integrals. The Hammersley quasi-random 
sequence is compared with the Sobol sequence and the results are very precise 
for the multidimensional integrals under consideration, which shows the strength 
of the presented algorithm for low, mid and high dimensions.  

Stochastic methods under consideration are an efficient way to solve 
problems that are described with multidimensional integrals. For example, 
stochastic methods have been successfully applied for sensitivity studies of large 
air pollution model in [5]. Such multidimensional integrals of smooth functions 
can be used to describe problems in quantum mechanics for Wigner kernel 
evaluation; in computational finance for evaluation of option pricing; for quick 
choice of frequent range for objects with plasma cover; for determining the type 
of dynamic objects with low effective reflecting surface or for increasing the 
efficiency of radiolocation systems with application of artificial intelligence.  

This is the first time a particular 1-rank lattice rule based on Fibonacci 
lattice sequence is compared with Hammersley quasi-random sequence. There 
are several papers from authors in which Fibonacci lattice sequences is 
compared with Sobol sequence for different multidimensional integrals. 
Numerical experiments in this paper shows that Fibonacci sequence is the best 
choice for lower dimensions, as it was previously established. It is well known 
that as long as the integrand is sufficiently regular Fibonacci lattice rule 
outperforms other low discrepancy sequences for lower dimensions because of 
its lowest computational complexity and higher accuracy. 

It is interesting that Hammersley sequence gives better results than Sobol 
with increasing the dimensionality of the integral. In the case of mid and high 
dimensional integrals it can be seen that Hammersley sequence produces lower 
relative errors for a fixed computational time. Tables show that for  dimensional 
integral Sobol sequence gives better results than Hammersley, but for 10 and 25 
dimensional integrals Hammersley sequence produces lower relative errors than 
Sobol sequences. In the future a scrambled version of Sobol sequence will be 
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presented and a comparison with the Hammersley sequence will be given. It will 
be interesting to compare Hammersley sequence with Halton and Niederreiter 
sequences, but this will be an object of a future study. 
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