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ABSTRACT: The paper addresses selected methodological aspects of international 
migration forecasting. The new methods based on the Bayesian statistics have been recently 
developed. A fundamental problem in Bayesian statistics is the accurate evaluation of 
multidimensional integrals. A comprehensive experimental study based on Faure and 
Hammersley low discrepancy sequences and Fibonacci based lattice rule has been done. The 
numerical tests show that the stochastic algorithms under consideration are efficient tool for 
computing multidimensional integrals. It is important in  order to obtain a more accurate and 
reliable interpretation of the results in Bayesian statistics which is a foundation in 
international migration forecasting. 
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Introduction 
Forecasting international migration is an important, yet difficult research 

task, characterized by the highest errors among the forecasts of all components 
of the demographic change [1]. Reasons for this include a lack of a 
comprehensive migration theory, difficulties in the theoretical framework of 
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migration [5], uncertainty of potential explanatory variables, ignoring forced 
migration and policy elements in the forecasts, as well as poor data quality [3]. 
In order to improve accuracy of the international migration forecasts, attempts 
should be also made to improve the forecasting methodology [1,2,3].  
 
Bayesian model for forecasting international migration  
The main drawback of a majority mathematical models of migration, apart from 
the event-history analysis, is that they themselves do not explicitly address the 
issue of uncertainty, important for preparing any forecast on their basis [3]. 
Although some of the models apply Markov chains [5,10,11], and can be 
therefore used to assess uncertainty 
using simulations, this possibility has not been explored up to date. However, 
the assessments of uncertainty may be also included in a majority of 
demographic models (cohort-component, multi-regional, or multi-state) by 
feeding them at input with stochastic forecasts of particular 
components of demographic change. The latter may involve econometric 
forecasts and time series models, both in the sample-theory and the Bayesian 
frameworks. 

In the last few years an alternative approach based on the paradigm of 
Bayesian statistics has been developed in [3]. The methodology that would 
combine the advantages of the existing ones, including both the formality of the 
applied statistical tools, and including subjective expert judgment in the 
forecasting model is presented in [3]. This methodology allows for construction 
of forecasting models combining the formal methods with the subjective 
expertise [2,3].  

Forecasting in the Bayesian approach is based on the construction of a 
probability distribution of the vector of future values of the variable under study, 
conditional on the vector of past (observed) values, and taking into account the 
posterior knowledge on the parameters of the forecasting model [7]. Bayesian 
methodology can reduce the estimation and prediction errors, in case the prior 
distribution is informative and consistent with the observations [3,4,9]. This is 
important in the small-sample studies (e.g., with population disaggregated by 
sex, age, regions, etc.), where the prior information has relatively more weight 
in the posterior result than the observations, unlike in large datasets [6,9]. The 
extreme estimates obtained from small-sample data are in this way corrected 
towards the prior expectations. The same applies to forecasting models based on 
short time series, where the Bayesian approach is a way to reduce uncertainty 
[23]. Additionally, the Bayesian methodology allows for a formal model 
selection in order to maximally utilize information from the sample, by 
comparing the posterior odds of different models given the data [22].  
  A fundamental problem in this methodology is the accurate evaluation of 
multidimensional integrals. High dimensional integrals are usually solved with 
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Monte Carlo algorithms. Monte Carlo method is the only possible method for 
high-dimensional problems since its convergence is independent of the 
dimension. Monte Carlo methods give statistical estimates for the functional of 
the solution by performing random sampling of a certain random variable 
whose mathematical expectation is the desired functional. Monte Carlo methods 
are methods of approximation of the solution to problems of computational 
mathematics, by using random processes for each such problem, with the 
parameters of the process equal to the solution of the problem. The method 
can guarantee that the error of Monte Carlo approximation is smaller than a 
given value with a certain probability [8]. 
Quasi-Monte Carlo algorithms for numerical integration  
In the last few years new approaches have been developed that outperform 
standard Monte Carlo in terms of numerical efficiency. It has been found that 
there can be efficiency gains in using deterministic sequences rather than the 
random sequences which are a feature of standard Monte Carlo. These 
deterministic sequences are carefully selected so that they are well dispersed 
throughout the region of integration. Sequences with this property are known as 
low discrepancy sequences. These sequences are often more efficient than 
standard Monte Carlo in evaluating high dimensional integrals if the integrand 
is sufficiently regular.  
They are usually superior to the Monte Carlo methods as they have a 
convergence rate of ((log N)s/N ), where N is the number of samples and s is 
the dimensionality of the problem under consideration.  
The standard M-dimensional Hammersley sequence [13] based on a number of 
samples N is simply composed of a first component of successive fractions 0/N, 
1/N, ..., N/N, paired with M-1 1-dimensional van der Corput sequences [20], 
using as bases the first M-1 primes. The van der Corput sequence generates a 
sequence of points in [0,1] which never repeats. For positive index I, the 
elements of the van der Corput sequence are strictly between 0 and 1. In 
particular, the I-th element of the van der Corput sequence is computed by 
writing I in the base B (usually 2) and then reflecting its digits about the decimal 
point. Let b1,...,bs-1 be coprime positive integers greater than 1. For given s and 
N, the s-dimensional Hammersley set of size N is defined by [14] 

 
for n = 1, ..., N. Then the discrepancy of the set is obtained in [13]: 

 
where C is a constant depending only on b1, ..., bs−1. The above estimation for 
the discrepancy of the Hammersley sequence means that this is a low 
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discrepancy sequence. The parameters of the algorithm are input: the integer I, 
the index of the element of the sequence 0 <= I; integer M, the spatial 
dimension, 1 <= M <= 100 and integer N, the "base" for the first component 1 
<= N.  Output is real R(M), the element of the sequence with index I. 
The monographs of Sloan and Kachoyan [19] and Wang and Hickernell [21] 
provide comprehensive expositions of the theory of integration lattices.  
Let n be an integer, and a =( a1,...,as) be an integer vector modulo n. A set of the 
form [15]  

 
is called a lattice point set, where {x} denotes the fractional part of x. The vector 
a is called a lattice point or generator of the set. As one can see, the formula for 
the lattice point set is simple to program. The difficulty lies in finding a good 
value of a, such that the points in the set are evenly spread over the unit cube. 
The choice of good 
generating vector, which leads to small errors, is not trivial. We consider the 
following generating vector based on generalized Fibonacii numbers of 
corresponding dimensionality: 

 
where 

 
with initial conditions 

 
for l=0,1,… 
The discrepancy of the set obtained by using the vector described above is 
asymptotically estimated in [21]. 
The number of calculation required to obtain the generating vector is       O(ln 
nl). The generation of a new point requires constant number of operations, thus 
to obtain a lattice set of the described kind consisting of nl points, O(ln nl) 
number of operations are necessary.  
The Faure sequences [13] are a digital (0, s)-sequence over Fb with b denoting a 
prime (original case) or a prime power (general case) greater or equal to s. The s 

infinite generator matrices C(1),…,C(s) over Fb are defined by C(i) = (cjr
(i))j, r ≥ 0  

 
                                                  with   

where α1,…, αs denote s distinct elements from Fb and the conventions α0 = 1 for 
all α ∈ Fb and   
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For α = 1, the resulting matrix is the infinite Pascal matrix modulo the 
characteristic of  Fb; for α = 0, it is the infinite identity matrix. If s = 1 and   α1 = 
0, the resulting (0, 1)-sequence is identical to the van der Corput sequence in the 
same base [20]. The algorithm for the Faure sequence follows the method of  
Henri Faure in [12] for computing quasi-random numbers.  It is a merging and 
adaptation of the routines INFAUR and GOFAUR from ACM TOMS 647. We 
use of persistent variables to improve the MATLAB implementation. The 
parameters of the Faure algorithm are described below. The input is an integer 
DIM_NUM, the spatial dimension, which should be at least 2. The other 
parameter is integer SEED, which is the seed, that indicates the index of the 
element of the sequence to be calculated.  If SEED is negative, it is effectively 
replaced by a more suitable value. The output is a real QUASI(DIM_NUM), the 
next quasi-random vector. For the output the appropriate value of  SEED have to 
be used on the next call, if the next element of the sequence is desired [4].  

Numerical example and results 

We will be interested in the following integrals that have widely used in 
Bayesian statistics: 

 

where f(x) and φ(x) are s-dimensional polynomials and N is a natural number. 
This integrals are investigated by Shaowei Lin in [14].  We will test the 
performance of the Faure sequence (FAUR), the Hammersley sequence 
(HAM) and a particular lattice rule with generating vector, based on the 
generalized Fibonacci numbers of the corresponding dimensionality 
(FIBO). We will consider  the following 7 and 15 dimensional integrals 
(Example 1 and Example 2 respectively): 
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Table 1: The relative error for 7 dimensional integral 
N FAUR FIBO HAM 
100 9.81e-2 9.26e-2 1.64e-1 
1000 1.03e-3 2.21e-2 6.59e-2 
10000 3.34e-4 1.59e-3 6.45e-2 
100000 3.40e-4 9.14e-5 8.17e-3 

 
Table 2: The computational time for 7 dimensional integral 

time in seconds FAUR FIBO HAM 
0.1 8.17e-2 2.17e-2 3.19e-1 
1 2.26e-3 9.32e-3 8.12e-2 
10 2.34e-4 2.47e-3 6.45e-2 
60 1.10e-4 1.15e-4 8.69e-3 

 
Table 3: The relative error for 15 dimensional integral 

N FAUR FIBO HAM 
100 7.45e-3 3.04e-5 6.44e-4 
1000 7.86e-4 3.04e-5 1.95e-4 
10000 1.26e-4 1.23e-5 7.27e-5 
100000 6.43e-5 7.99e-6 7.51e-5 

 
Table 4: The computational time for 15 dimensional integral 

time in seconds FAUR FIBO HAM 
0.1 5.56e-3 1.22e-4 5.94e-2 
1 6.58e-4 7.80e-5 1.24e-3 
10 1.06e-4 7.60e-5 9.46e-4 
60 7.17e-5 1.38e-5 6.65e-5 

 
In the Table 1 and 2 are presented the relative error for the 7 and 15 

dimensional integrals with Fibonacci lattice sequence (FIBO), Faurre low 
discrepancy sequnce (FAUR) and Hammersley quasi-random sequence (HAM) 
for a fixed number of points. In Table 2 and 4 are presented the relative errors 
for 7 and 15 dimensional integrals with FAUR, FIBO and HAM for a fixed 
computational time which is a measure of the computational complexity. 
Obviously FIBO has the lowest computational complexity and is the fastest 
algorithm, while HAM and FAUR are slower, because they need an additional 
time for generating the corresponding low discrepancy sequences. As can been 
seen from the results for 7 dimensional integral, the low discrepancy sequence of 
Hammersley produces the worst results. It is interesting to see that Faure 
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sequence gives lowest relative errors for a given number of realizations of the 
random variable - see Table 1, but the Fibonacci lattice sequence has the 
advantage for a preliminary given time in seconds - see Table 2. For 15 
dimensional integral Fibonacci gives the best results for a given number of realizations 
and fixed computational time - see Table 3, while Hammersley sequence and Faure 
sequence have  very similar behavior - see Table 4. So we can conclude that all stochastic 
algorithms under consideration are efficient tool for evaluation of multidimensional 
integrals related to Bayesian models in migration forecasting. This is the first time a 
particular 1-rank lattice rule based on Fibonacci generating vector is compared 
with Hammersley and Faure quasi-random sequences. 

Conclusion 
In this paper we analyze the performance of different quasi-Monte Carlo 

methods for multidimensional integrals related to Bayesian based models in 
improving the international migration. Stochastic methods under consideration 
are an efficient way to solve problems in forecasting international migration 
based on Bayesian statistics. A fundamental problem in Bayesian statistics is the 
accurate evaluation of the presented multidimensional integrals. It is a crucial 
element since this may be important for improving the international migration 
forecasting. 
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