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1. Introduction: GaN power devices and drivers  

Gallium nitride (GaN) is a chemical compound of gallium and nitrogen. GaN 
has a high critical electric field and high electron mobility. It is the most promising 
candidates for new high-power, high frequency and high temperature 
applications. Low and high voltage GaN transistors and diodes based on lateral 
and vertical structures are considered the future of power electronics [1]. 

 Tables 1, 2, 3, 4, show GaN transistors, and suitable for them driver integral 
circuits, and their manufactures. GaN applications are: high-energy laser, all-
electric planes, unmanned aerial vehicles, robotic vehicles and other [2].  

 
Table 1 GaN transistors 

Part Number Description Manufacturer 
TPH3207WS 

TP65H050WS-ND 
TPH3212PS-ND 

GANFET N-CH 650V 50A TO247 
GANFET N-CH 650V 34A TO247-3 
GANFET N-CH 650V 27A TO220 

Transphorm 

IGOT60R070D1AUMA1 
IGLD60R070D1AUMA1DKR 

IC GAN FET 600V 60A, Normally OFF, 70 mR 
IC GAN FET 600V 60A 8SON 

Infineon 
Technologies 

GAN063-650WSAQ 650V TO-247 Nexperia USA Inc. 
IGT60R190D1SATMA1 
IGT60R070D1ATMA1 

IC GAN FET 600V 23A 8HSOF 
MOSFET 600V 23A 55mR CoolGaN  

Infineon 
Technologies 

EPC2034 GANFET TRANS 200V 48A BUMPED DIE EPC 
NTP8G202NG MOSFET N-CH 600V 9A TO220 ON Semiconductor 

GS61004B-E01-MR 
GS-065-011-1-L 

GS66508B-E01-MR 
GS61008T 

MOSFET 100V 45A E-Mode GaN 
MOSFET 650V, 11 A, E-Mode GaN 
MOSFET 650V 30A E-Mode GaN 

GaN 100V 90A 7mR 100 MHz, 0 V to 6 V 

GaN Systems 
 

PGA26E19BA MOSFET MOSFET 600VDC 190mohm X-GaN Panasonic 
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Table 2 GaN MOSFETs with integrated driver 
Part Number Description Manufacturer 
LMG5200 

LMG3410R050 
80V, 10A, GaN Half-Bridge Power Stage, Up to 10 MHz, 8 pins 

480-600, 12A, 50mΩ GaN, int. Driver, current and temp. protection 
Texas Instruments 

IR11688 200 V Second said Dual Synchronous Rectification Control IC, 8 pins Infineon Techn. 
INN3270C 
INN3670C 

PowiGaN™ technology, 100 W without heat sinks, Constant Power 
PowiGaN™ technology, 100 W without heat sinks, CV/CC accuracy 

Power 
Integration 

NV6117 650 V 120 mΩ GaNFast™ power IC, 2 MHz, Vcc=10-30 V Navitas 

Table 3 One and two gate driver ICs for GaN transistors 
Part № Description Manufacturer 

UCC21220 
UCC20225 
UCC20225 
LMG1210 
LMG1020 
LMG1205 
LM5113 

UCC27611 
ISO7730 
ISO7831 

Isolated 3000-VRMS dual-channel gate drivers 4/6 A 
Isolated Dual-Channel Gate Driver with Single Input, 48-V Systems 

Isolated 5700-VRMS dual-channel gate drivers 4/6 A 
200-V, half-bridge driver, 50-MHz, 

Single, low-side driver, 60-MHz, 5-V Supply Voltage 
80-V Drivers for high-side and the low-side: buck; boost and half bridge 
90-V, 1.2-A, 5-A, Half Bridge GaN Driver; buck; boost and half bridge 

Single-channel, 5-V, 4-A to 6-A Low Side GaN Driver, 
100-Mbps, Triple channel digital isolators, 5000 Vrms, Vdd= 2.25 - 5.5 V 

100-Mbps, 5.7-kVRMS reinforced triple-channel 2/1 digital isolator 

Texas 
Instruments 

1EDF5673 
1EDS5663 

Isolated 1500 V dual-channel gate drivers for GaN 
Isolated 6000 V dual-channel gate drivers for GaN 

Infineon 
Technologies 

NCP4305A 
NCP4308A 
NCP51820 

Single second synchronous rectification driver MOSFET, 8 pins, Vccon=4.5 V 
Single second synchronous rectification driver MOSFET, 8 pins, Vccon=4.5 V 

650 V, High−Side and Low−Side Gate Drivers,for GaN Totem Pole PFC 

On Semicon-
ductor 

AN34092B Single-channel gate driver GaN, (– 5.5V to – 3V), 4.75 V to 24 V Supply Panasonic 
ADuM4120 
ADuM4121 

Single-channel Gate Driver, Input 2.5-6.6V, Output 2.3A/4.5-35V, 5 kV rms 
Single-channel Miller clamp, Input 2.5-6.6V, Out 2.3A/4.5-35V, 5 kV rms 

Analog 
Device 

Table 4 Control ICs for GaN and MOSFET devices 
Part Number Description Manufacturer 
LM5140-Q1 
TPS40400 

TPS53632G 

Wide Input Range Dual Synchron. Buck Controller, 440 kHz - 2.2 MHz 
3 V-20 V, 30 A, PMBus Synchron. Buck Controller, 200 kHz - 2 MHz 

Half-Bridge Controller ,48-V GaN DC/DC Converter, 300 kHz - 1 MHz 

Texas Instruments 

IR11688 Half-bridge Synchronous Rectifier Control drives a pair of N-channel Infineon Techn. 
LTC7800 
LT1248 
LT3798 
LT3825 
LT8315 

LTC1922-1 
LTC3765 

60 V, High Frequency Step-Down Controller, 320 kHz - 2.25 MHz 
Power Factor Controller, 500 kHz, Vout=12-17,5V; ON-OFF=12-17,5V 
Isolated No Opto-Coupler Flyback Controller with Active PFC, CV/CC 

Isolated No-Opto Synchronous In-Out, Flyback Controller, 250kHz, 
18V to 560V/ 630V/300mA Power Switch, CV/CC, Vout=12V 

Synchronous Phase Modulated Full-Bridge Controller, 1MHz, 6 outputs 
Active Clamp Forward Isolated Controller and Gate Driver, 430 kHz 

Analog 
 Devices 

NCP1568 Active Clamp Flyback (ACF) in ZVS, Frequency-100 kHz to 1 MHz On Semicond. 
IRS25411 600 V, 500 KHz buck control ICs for constant LED current regulation. Int. Rectifier 

The AlGaN/GaN heterostructure is now the most used for GaN devices with 
aerospace applications: for communication and strategic satellites; high altitude 
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aircraft; low earth orbit aircraft; onboard satellites; data communication and 
networking; especially for high orbits around the Earth; interplanetary flights and 
work in open space [2]. Some GaN radiation-resistant electronic devices are 
shown in Table 5. For example, Dual Low-Side Power Driver Module FBS-
GAM04-P-R50 is Rad-Hard/Commercially Screened [3]: Guaranteed Total 
Ionizing Dose – rated to 100 VDS up to 100 % of rated Breakdown and Neutron 
Fluence – Maintains kRad; Single Event – SEE immunity for LET(Si) of ~83.7 
MeV/mg/cm2 with specification up to 1 x 1013 N/cm2. Suitable Radiation 
Hardened Low Side GaN FET Drivers are ISL70040SEH and ISL73040SEH.  

 
Table 5 GaN Rad-Hard, Freebird Semiconductor 

Part Number Description 
FBS-GAM01-P-R50 50V, 12A Single Low-Side Power Driver Module, 3 MHz, eGaN® FDA10N30X 

FBS-GAM01-P-R100 100V, 12A Single Low-Side Power Driver Module, 3 MHz, 
FBS-GAM01-P-R-PSE Single Output eGaN Gate Driver Module 

FBS-GAM02-P-R50 50V, 10A Half-Bridge Driver/Logic/integrated output Power GaN HEMTs, 1 MHz, 
FBS-GAM02P-R-PSE 50V, High-Speed Multifunctional Power eGaN HEMT Driver 
FBS-GAM04-P-R50 50V/10A Dual Low-Side Power Driver Module 

FBS-GAM04P-R-PSE Dual low-side Driver/Logic for use with external power GaN HEMTs 
FBS-GAM04-P-R100 100V/10A Dual Low-Side Power Driver Module 

 
Other major providers of GaN parts are: Transphorm; VisIC Tech; Exagan; 

Sanken Electric; Dialogue Semiconductor; MicroGaN; Toshiba; Oorvo; Macom; 
Microsemi; NXP Semiconductor; Sumitomo Electric and United Monolithic [2, 
4, 5, 6, 7, 8]. Figure 1 shows comparison and advantages of different structures of 
GaN transistors, according to the specification of different manufacturers [9].  

Drivers suitable for HEMT GaN are ADuM4120 and ADuM4121 – isolated, 
single-channel drivers that employ Analog Devices, Inc. iCoupler® technology 
to provide precision isolation – 5 kV rms isolation. 

 

 
Fig. 1 Comparison and benchmark for different GaN manufactures [9]. 
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Application examples for GaN device are: Power Factor Correction (PFC) 
totem pole circuit with efficiency of 99 %; Active clamp Flyback with size 
reduction of 60 % and Motor drive 3 phase Inverter circuit (size reduction of 75 
% and loss reduction of 60 %). 

2. Modelling and topologies for power electronics

The aim of this work is to study main working stages and different 
parameters of bidirectional isolated PFC dual active bridge (PFC-DAB) AC–DC 
converter topology. A bidirectional and isolated (DAB) AC–DC converter 
topology with power destiny =1,34 W/cm3 is given on Figure 2 [10,11]. One 
article [12] discusses the advantages when high-performance vertical GaN 
transistors and diodes are used in the DAB AC–DC converter. Totem pole 
topology PFC advantages are shown in Figure 3 [13]. Reference [14] explains 
how hard-switching can form a fundamental switching transition for GaN devices. 

For SSR,1 and SSR,2 and his drivers (Figure 2, GaN half-bridge topology) it is 
suitable plate LMG341xEVM-018 [15]. 

Fig. 2 Circuit schematic of the single-phase, single-stage (1-S), bidirectional 
and isolated DAB AC–DC converter topology [10]. 

Fig. 3 Comparison between classic boost PFC vs. totem pole PFC [13]. 
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3. Simulation and results of GaN topology with aerospace application  

Figure 4 shows work of the Motor1 from source V2. The design parameters 
for Figure 4 are:  V2=44-132 Vac; V2-nom=110 Vac; Fac=50 Hz (to V2-min=44 Vac); 
Fac=150 Hz (to V2-max=132 Vac); VC1=193 Vdc; VC2=8,4 Vdc; Fsw=50-400 KHz 
and Pout=1250 W. We can calculate L1, when Vac-nom is applied: 

 

𝐿1 =
1

%𝑅𝑖𝑝𝑙𝑒

𝑉2_𝑛𝑜𝑚2∗ (1−1,41
𝑉2_𝑛𝑜𝑚

𝑉𝑐1
)

𝐹𝑠𝑤 ∗  𝑃𝑜𝑢𝑡
=

1

25%

1102∗ (1−1,41
110

193
)

75 ∗ 103 ∗  1250 
= 101 uH 

(1) 

Maximum RMS current occurs in L1 when Vac = 44 V: 
𝐼𝐿1_𝑟𝑚𝑠

𝑃𝑜𝑢𝑡

 ∗ 𝑉2_𝑚𝑖𝑛
=

1250

0,95 ∗ 44
= 29,9 Arms (2) 

  
Voltage ripple peak to peak (Vac_pp) of VC1, when Vac = 44 V: 
𝑉𝑎𝑐_𝑝𝑝 =

𝑃𝑜𝑢𝑡

2𝜋∗  𝐹𝑠𝑤∗ 𝑉𝑐1∗ 𝐶1 
=

1250

2∗3,14∗75∗103∗193∗0,47∗10−3 
=29 V (3) 

The PFC output capacitor capacitance, when Vac = 44 V: 
𝐶1 =

𝑃𝑜𝑢𝑡

2𝜋∗𝑉𝑐1∗𝐹𝑠𝑤∗𝑉𝑎𝑐_𝑝𝑝 
=

1250

2∗3,14∗193∗75∗103∗29 
=474 uF (4) 

 
 

 
Fig. 4 Single-phase generator to: PFC; DC–DC converter; battery and motor. 

 

 
Fig. 5 Battery to: isolated DC–DC, PFC-full bridge converter, and motor. 

 
For Figure 4 and Figure 5 (made with Micro-Cap 12.2.0.3 soft) the following 

transistors were chosen: for X1,2–GS66516B (650 V/ 60 A/ 25 mΩ); for X3,4– 
IXFK210N30X3 (300 V/ 210 A/ 5,5 mΩ/ 1250 W); for X5,6,7,8–
X2LMG3411R050 (480 V/ 12 A/ 50 mΩ/ VDD(ON)=9,1 V/ 27 mA/ 500 Khz) and 
IPT004N03LATMA1 (30 V/ 300 A/ 0,40 mΩ/ 300 w) for X9,10,11,12,13. 

GaN device X2LMG3411R050 inside the case has a driver with over-
temperature protection (when temperature exceeds 165 °C) and cycle-by-cycle 
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overcurrent protection (40-77 A). This driver works together with triple channel 
digital isolators ISO7730/1 [15]. 

Simulation PFC start up from Figure 4 (when Vac = 132/44 Vac and time 
interval of 1-3 s) shown at Figure 6 for L1, X1-4, C1 (made with PLECS soft).  

In vertical order are shown; input voltage V2; current IL1 and voltage VC1. 
Zoom view of the transition mode is shown on Figure 7 for: V2; IL1; input voltage 
of X2 and VC1. Figure 8 shows a zoom of the established mode for: V2; IL1 and 
VC1. Tables 6,7,8,9 (made with PLECS) give simulation values for Figure 4 for 
X1-4 (four transistors GS66516B per switch X1,2 and two IRFP4668PBF for 
X3,4), when L1 is optimal changed versus Fsw; and Pout=1250 W.  

Table 6 shows negative result at V2=44 Vac/50 Hz where the temperature 
losses of X1,2,3,4 are unacceptably high; at Fsw =400 KHz, 3 seconds after 
switching on, the transistors X1,2 overheat and their thermal protection is 
activated. Table 7 shows positive results at V2=55 Vac: the temperature losses of 
X1-4 are acceptable; the temperature protection does not trip and efficiency of 
X1-4 rises above the desired minimum 90 %, for Fsw=50-75 [KHz]. Table 8,9 
shows excellent results at V2=110-132 Vac: the temperature losses are sufficiently 
low and with Effiency=95,96-97,66 % it is possible to work with more than 75 
KHz, which reduces the weight of the radiators and L1 up to 4 times.  

Table 6 Parameters of L1, X1-4 from Figure 4, when V2=44 Vac/50 Hz. 
Fsw [KHz] 50 75 100 200 300 400 

X1,2,3,4 losses [W] 236,15 243,95 251,06 279,65 306 Over / 3 s 
L2 [uH] 470 313 235 117 78 59 

Effiency [%] 81,14 80,51 79,96 77,76 75,56 X 

Table 7 Parameters of L1, X1-4 from Figure 4, when V2=55 Vac/62,5 Hz 
Fsw [KHz] 50 75 100 200 300 400 

X1,2 Losses [W] 14,04 16,76 19,47 30,64 41,63 53,8 
X3,4 Losses [W] 104,9 106.7 108,53 116,9 122,59 132 

L2 [uH] 470 313 235 117 78 59 
Effiency [%] 90,49 90,13 89,77 88,28 86,87 85,24 

Table 8 Parameters of L1, X1-4 from Figure 4, when V2=110 Vac/125 Hz. 
Fsw [KHz] 50 75 100 200 300 400 

X1,2 Losses [W] 3,77 5,28 6,80 12,86 19,36 25,13 
X3,4 Losses [W] 21,82 22,12 22,23 23,84 24,38 25,23 

L2 [uH] 470 313 235 117 78 59 
Effiency [%] 97,93 97,80 97,66 97,09 96,50 95,96 
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Table 9 Parameters of L1, X1-4 from Figure 4, when V2=132 Vac/150 Hz 
Fsw [KHz] 50 75 100 200 300 400 

X1,2 Losses [W] 3,16 4,55 5,93 11,46 17,35 21,76 
X3,4 Losses [W] 15,13 15,26 15,43 16,07 16,80 17,18 

L2 [uH] 470 313 235 117 78 59 
Effiency [%] 98,52 98,40 98,28 97,78 97,27 96,87 

  
Fig. 6 Start process of Fig. 4 at V2 = 132/55 Vac. 

 

  
Fig. 7 Processes of Fig. 4 – zoom of transition mode when V2 = 132/55 Vac. 
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Fig. 8 Processes of Fig. 4 – zoom of established mode when V2 = 132/55 Vac. 
Table 10 Parameters from Figure 4 for L2, X5-8 versus Fsw. 

Fsw2 [KHz] 50 100 200 300 400 500 
X5,6,7,8 Losses [W] 2,15 2,99 4,46 5,62 19,7 23,66 

L2 [uH] 16,9 8,4 4,2 2,8 2,1 1,7 
Effiency [%] 99,83 99,59 99,65 99,56 98,42 98,02 

For Figure 4 simulation gives for first full bridge circuit the following results 
(for X5,6,7,8 and when Fsw =75 KHz): switching loss 𝑃𝑠𝑤=0,23 W; conduction
loss 𝑃𝑜𝑛=2,61 W; junction temperature 27 °C; L2=11,2 uH; efficiency 99,8 %. To
reduce the weight of L2, Tr1 and radiators of X5,6,7,8, simulations were made at 
Fsw2=50-400 KHz, see Table 10. In second full bridge circuit for one transistor X9 
(or X10,11,12) the dependencies (5,6,7,8,9) are in effect, where: 𝑃𝑜𝑛 is power loss
during ON-state;  𝑅𝑜𝑛 is drain-source on-state resistance; 𝑃𝑠𝑤  is source-drain
switching loss;  𝑃𝑔 is gate switching loss; 𝐸𝑜𝑛 _𝑜𝑓𝑓 is the drain switching loss 
energy (from manufacturer’s data); 𝑉𝑔 is gate voltage; 𝑄𝑔 is total gate charge; Iss 
is steady state gate current. 

𝐼𝑟𝑚𝑠 =
𝑃𝑜𝑢𝑡

𝑉𝑜𝑢𝑡 
√0,5 =

1250∗0,7071

8,4
= 105,22 𝐴𝑟𝑚𝑠

(5) 

𝑃𝑜𝑛 = 𝐼𝑟𝑚𝑠
2 ∗ 𝑅𝑜𝑛(80°𝐶) = 105,222 ∗ 10−3 ∗ 1,4 =15,5 W (6) 

𝑃𝑠𝑤 = 𝐸𝑜𝑛−𝑜𝑓𝑓 ∗ 𝐹𝑠𝑤2 = 6,4 ∗  10−3 ∗ 300 ∗ 103= 1,92 W (7) 

𝑃𝑔 = 𝑉𝑔 ∗ 𝑄𝑔 ∗ 𝐹𝑠𝑤2 = 9 ∗ 336 ∗ 10−9 ∗ 300 ∗ 103= 0,9072W (8)
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𝑃𝑡𝑜𝑡 = 𝑃𝑜𝑛 + 𝑃𝑠𝑤 + 𝑃𝑔 = 15,5 + 1,92 + 0,91 = 18,33 𝑊 (9) 

For Figure 4 four transistors X9,10,11,12 will dissipate 18,33*4=73,32 W, 
or Effiency9,10,11,12 =100*(1250-73,52)/1250=94,13 %. With work parameters for 
Figure 4: V2 = 110 V; Fsw = 200 KHz; Fsw2 = 300 KHz. Total in Figure 4 (for 
transistors X1-12) Effiency1-12 = 100*0,9709 * 0,9956 * 0,9413 = 90,99 %. 
 

3. Conclusion  
When we want to reduce the weight of hybrid electric propulsion system, we 

must reduce the need for heat dissipation by improving energy efficiency [16]. 
Bidirectional, dual active bridge is suitable for level 3 electric vehicle charging 
stations [17]. GaN MOSFETs are suitable for Unmanned Aerial Vehicles BLDC 
Motor Drive [18].  

This work exposes original modelling and simulation development of a 
primary power supply. Parameters for GaN transistors and circuit solution are 
chosen and verified by simulations. The author has a serial works for primary 
power supplies; power supply efficiency; GaN power devices, switching power 
supply design, power supply efficiency [19,20]. 
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