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ABSTRACT: In this paper we implement and analyze the performance of Sobol quasi-

random sequence and compare the results with the Halton quasi-random sequence has 

been done. We consider a case study with a non-smooth integrand function with 

applications in financial mathematics. We show that the Sobol sequence has some 

advantageous over the Halton sequence. It is established that Sobol sequence performs 

better than other sequences for higher dimensions.  
KEYWORDS: Financial mathematics, Quasi-Monte Carlo algorithms, 

multidimensional integrals, Halton sequence, Sobol sequence, Computational complexity 

 

Introduction 

Monte Carlo methods give statistical estimates for the functional of the 

solution by performing random sampling of a certain random variable whose 

mathematical expectation is the desired functional. Monte Carlo methods are 

methods of approximation of the solution to problems of computational 

mathematics, by using random processes for each such problem, with the 

parameters of the process equal to the solution of the problem. High 

dimensional integrals are usually solved with Monte Carlo algorithms and quasi 

16 JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 16, 2019



Monte Carlo algorithms. Monte Carlo method is the only viable method for 

high-dimensional problems since its convergence is independent of the 

dimension.  The method can guarantee that the error of Monte Carlo 

approximation is smaller than a given value with a certain probability [5]. The 

most  important advantage of the Monte Carlo methods is that they are suitable 

for solving multi-dimensional problems, since the computational complexity 

increases linearly and not exponentially with the dimensionality [5,14]. The MC 

method is a widely used tool in many fields of science. 

 The Monte Carlo encompasses any technique of statistical sampling 

employed to approximate solutions to quantitative problems. Essentially, the 

Monte Carlo method solves a problem by directly simulating the underlying 

(physical) process and then calculating the (average) result of the process. This 

very general approach is valid in areas such as physics, chemistry, etc [8].  

 In finance, the Monte Carlo method is used to simulate the various 

sources of uncertainty that affect the value of the instrument, portfolio and 

investment in question, and to then calculate a representative value given these 

possible values of the underlying inputs [6,7].  

 In the last few years new approaches in finance have been developed that 

outperform standard Monte Carlo in terms of numerical efficiency. It has been 

found that there can be efficiency gains in using deterministic sequences rather 

than the random sequences which are a feature of standard Monte Carlo. These 

deterministic sequences are carefully selected so that they are well dispersed 

throughout the region of integration. Sequences with this property are known as 

low discrepancy sequences. These sequences are often more efficient than 

standard Monte Carlo in evaluating high dimensional integrals if the integrand 

is sufficiently regular and for many finance applications this is the case. 

However it is interesting to consider multidimensional integrals of non-smooth 

function. Such integrals can be used to describe problems in option pricing in 

finance, where multidimensional integrals are used for statistical measures for 

option pricing [19]. 

The Monte Carlo method is known to be only accurate with a tremendous 

amount of scenarios since its rate of convergence is O(N −1/2). Quasi Monte 

Carlo methods use deterministic sequences that have better uniform properties 

measured by discrepancy. They are usually superior to the Monte Carlo 

method as they have a convergence rate of ((log N)d/N ), where N is the 

number of samples and d is the dimensionality of the problem under 

consideration.  

 

Quasi Monte Carlo algorithms for numerical integration 

Consider the problem of approximate integration of the multiple integral 

of dimension d. 
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For small values of d, numerical integration methods such as Simpson’s 
rule or the trapezoidal rule can be used to approximate the integral. These 
methods, however, suffer from the so-called curse of dimensionality and become 
impractical as d increases.  

The crude Monte Carlo method has rate of convergence O(N −1/2) which 
is independent of the dimension of the integral, and that is why Monte Carlo 
integration is the only practical method for many high-dimensional problems. 
Much of the efforts to improve Monte Carlo are in construction of variance 
reduction methods which speed up the computation or to use quasi-random 
sequences [5,12,15]. A quasi-random or low discrepancy sequence, such as the 
Faure, Halton, Hammersley, Niederreiter or Sobol sequences [19,20,21], is 
”less random” than a pseudorandom number sequence, but more useful for 
such tasks as approximation of integrals in higher dimensions, and in global 
optimization. This is because low discrepancy sequences tend to sample space 
”more uniformly” than random numbers. It is a question of interest to know which 
sequence outperforms the other. In this study we implement the Halton sequence and 
make a comparison with the Sobol sequence.  

 

Quasi Monte Carlo algorithm based on Halton sequence 

 The Halton sequences [9,10] are a digital (0, s)-sequence over Fb with b 
denoting a prime (original case) or a prime power (general case) greater or equal 
to d. The Halton sequence is constructed according to a deterministic method 
that uses coprime numbers as its bases. As a simple example, let's take one 
dimension of the Halton sequence to be based on 2 and the other on 3. The 
algorithm for the Halton sequence follows the method of  John Halton in [9,11] 
for computing quasi-random numbers. We use of persistent variables to improve 
the MATLAB implementation. The parameters of the Halton algorithm are 
described below. The input, integer I1, I2, the indices of the first and last 
elements of the sequence,  0 <= I1, I2. We also have an input, integer M, the 
spatial dimension,1 <= M <= 100. The output is a real R(M,abs(I1-I2)+1), the 
elements of the sequence with indices I1 through I2. It is important to mention 
that the Halton sequence used here is not scrambled, a comparison with a 
scrambled sequence will be an object of a fututre study. A comparison with the 
Sobol sequnce [18,19,20] has been made for the first time for a special kind of 
multidimensional integral with non smooth integrand function used in finance 
[20,21]. 

 

Quasi Monte Carlo algorithm based on Sobol sequence 

For the Sobol sequence we use an implementation that is an adapation of the 
INSOBL and GOSOBL routines in ACM TOMS Algorithm 647 [9] and ACM 
TOMS Algorithm [1,2,3,4]. The original code can only compute the ”next” 
element of the sequence [11]. The revised code allows the user to specify the 
index of the desired element. The algorithm has a maximum spatial dimension of 
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40 since MATLAB doesn’t support 64 bit integers. A remark by Joe and Kuo 
[10] shows how to extend the algorithm from the original maximum spatial 
dimension of 40 up to a maximum spatial dimension of 1111. The 
FORTRAN90 and C++ versions of the code has been updated in this way 
[12,15,19], but updating the MATLAB code has not been simple, since 
MATLAB doesn’t support 64 bit integers. We use algorithm that generates a 
new quasi-random Sobol vector with each call. The routine adapts the ideas of 
Antonov and Saleev [1,13,22] . The parameters of the algorithm are an integer 
DIMNUM, the number of spatial dimensions. The algorithm starts with integer 
SEED, the ”seed” for the sequence. This is essentially the index in the sequence 
of the quasi-random value to be generated. On output, SEED has been set to the 
appropriate next value, usually simply SEED + 1. If SEED is less than 0 on 
input, it is treated as though it were 0. An input value of 0 requests the first (0-
th) element of the sequence. Output is the real QUASI(DIMNUM), the next 

quasi-random vector [1,5.15].  

Numerical example and results 

Table 1: The relative error for 4 dimensional integral of a non-smooth 

function with Faure and Sobol QMC 

 

N Halton Time,s Sobol Time,s 

102 3.15e-2 0.03 5.67e-3 0.02 

103 6.32e-3 0.43 8.91e-4 0.21 

104 9.10e-4 3.93 5.51e-4 1.78 

105 1.97e-4 42.3 5.79e-5 18.6 

106 5.09e-5 200 7.70e-6 119 

 

Table 3: The computational time for 4 dimensional integral of a non-

smooth function with the three methods 

 

Time, s Halton Sobol 

0.1 1.32e-2 1.86e-3 

1 3.46e-3 7.15e-4 

5 3.26e-4 2.03e-4 

10 1.22e-4 9.75e-5 

60 7.91e-5 8.91e-6 

 

We will test Halton and Sobol sequence for evaluating the following 

multidimensional integral of non-smooth integrand function, which is: 
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where the integration is over the unit 4-dimensional hypercube. The referent 

value of the integral is 7.22261 [5,16]. exist. Such applications appear also in 

some important problems in financial 

mathematics. 

As can been seen from the table for 4 dimensional integral, the low 

discrepancy sequence of Sobol produces more rapid convergence, and  

lower errors, than the Halton sequence. It is important to mention that the the 

pseudo randomly obtained averages converge at the rate O(N−1/2), while the 

quasi randomly obtained averages converge at a rate closer to O(N−1). As 

expected the Sobol sequence gives better results than the Halton sequence.  It is 

interesting to see that for a given number of samples the Halton sequence gives better 

relative error than the Sobol – see Table 1, and the Sobol sequence is two times 

faster. It is interesting that for a preliminary given time up to 5s the Sobol and Halton 

gives closer relative errors – see Table 2, but for 60s the Sobol sequence starts 

producing better results. For a preliminary given time of only 1s Sobol sequence 

gives relative error of 7.15e-4 and Halton sequence gives relative error of 3.46e-3 

which is already a sufficient accuracy. Definitely for larger number of points and 

for a preliminary given time, the advantage of Sobol quasi-random sequence in 

place of both Halton sequence should become even more pronounced – see 

Table 1 and Table 2. For this example of non-smooth integrand function arises 

in financial mathematics even the first derivative does not exist.  

Conclusion 

In this paper we analyze the performance of two quasi Monte Carlo methods 

for multidimensional integrals. The Sobol quasi-random sequence is compared 

with the Halton sequence and the results are very precise for the 

multidimensional integrals under consideration, which shows the strength of the 

presented algorithm for relatively low dimensions. We consider an example of 

non-smooth integrand functionwih applications in finance. For this particular example 

the stochastic algorithms under consideration produce reliable results. While Sobol 

sequence is better than the  Halton sequence. In the future a scrambled version of the 

two algorithms will be presented. The experiments show that for a preliminary given 

time the Sobol algorithm outperform the Halton sequence. The multidimensional 

integral under consideration is with non-smooth integrand which is more difficult case 

than the smooth integrand function.  Stochastic methods under consideration are an 

efficient way to solve problems like the mentioned above that are described with 

multidimensional integrals of both smooth and non-smooth functions. It will be 
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interesting to compare Faure sequence with Halton and Niederreiter sequences, 

but this will be an object of a future study which can find appliance in security 

systems.  

Acknowledgement  

The author Venelin Todorov is supported by the Bulgarian National 

Science Fund under Young Scientists Project KP-06-PM32/4 - 2019 "Advanced 

Stochastic and Deterministic Approaches for Large Scale Problems of 

Computational Mathematics" and by the Bulgarian National Science Fund under 

Project DN 12/5-2017, ''Efficient Stochastic Methods and Algorithms for Large-

Scale Problems''.  

This material is financed by FNI-19, Faculty EEA 06/2019. 

 

References 

[1]. I.A. Antonov, V.M. Saleev, An Economic Method of Computing LP Tau-

Sequences, USSR Computational Mathematics and Mathematical Physics, 

Volume 19, 1980, pages 252-256.               

[2]. Paul Bratley, Bennett Fox, Algorithm 659: Implementing Sobol's 

Quasirandom Sequence Generator, ACM Transactions on Mathematical 

Software, Volume 14, Number 1, March 1988, pages 88-100.                                   

[3]. Paul Bratley, Bennett Fox, Harald Niederreiter, Implementation and Tests 

of Low Discrepancy Sequences, ACM Transactions on Modeling and 

Computer Simulation, Volume 2, Number 3, July 1992, pages 195-213.                                 

[4]. Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, 

Second Edition, Springer, 1987,ISBN: 0387964673, LC: QA76.9.C65.B73. 

[5]. I. Dimov, Monte Carlo Methods for Applied Scientists, New Jersey, 

London, Singapore, World Scientific, 2008, 291p.  

[6]. Dzhurov V. Application of Summarized Functions for Information Source 

Protection, Journal Scientific and Applied Research, 2013, No 3, pp. 51-56. 

[7]. Dzhurov V., Kostova M., Dzhurov K. Application of Probability Neural 

Networks for Classification of Explosives with Blasting Action. 

Mathematics in Industry, Cambridge Scholars Publishing, 2014, 254-285. 

[8]. Dzhurov V., Slavova A., Kostova M., Tsakoumis A., Mladenov V.. 

Рrocessing of Radioholographic Image with CNN Neural Network. 

WSEAS Transactions on Signal Processing, 2005, No 1, pp. 67-72. 

[9]. John Halton, On the efficiency of certain quasi-random sequences of points 

in evaluating multi-dimensional integrals, Numerische Mathematik, 

Volume 2, 1960, pages 84-90.  

[10]. John Halton, GB Smith, Algorithm 247: Radical-Inverse Quasi-Random 

Point Sequence, Communications of the ACM, Volume 7, 1964, pages 

701-702.   

[11].  Ladislav Kocis, William Whiten, Computational Investigations of Low-

JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 16, 2019 21



Discrepancy Sequences, ACM Transactions on Mathematical Software, 

Volume 23, Number 2, 1997, pages 266-294.  

[12]. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of 

Quasirandom Sequence Generators, ACM Transactions on Mathematical 

Software,Volume 12, Number 4, pages 362-376, 1986.            

[13]. Stephen Joe, Frances Kuo, Remark on Algorithm 659: Implementing 

Sobol's Quasirandom Sequence Generator, ACM Transactions on 

Mathematical Software, Volume 29, Number 1, March 2003, pages 49-57. 

[14]. Harald Niederreiter, Random Number Generation and quasi-Monte Carlo 

Methods, SIAM, 1992, ISBN13: 978-0-898712-95-7, LC: QA298.N54.  

[15]. William Press, Brian Flannery, Saul Teukolsky, William Vetterling, 

Numerical Recipes in FORTRAN: The Art of Scientific Computing, 

Second Edition, Cambridge University Press, 1992, ISBN: 0-521-43064-X, 

LC: QA297.N866.           

[16]. Ilya Sobol, Uniformly Distributed Sequences with an Additional Uniform 

Property, USSR Computational Mathematics and Mathematical Physics, 

[17]. I. Sobol, D. Asotsky, A. Kreinin , S. Kucherenko. Construction and 

Comparison of High-Dimensional Sobol’ Generators, 2011, Wilmott 

Journal, Nov, pp. 64-79 Volume 16, 1977, pages 236-242.  

[18]. Ilya Sobol, YL Levitan, The Production of Points Uniformly Distributed in 

a Multidimensional Cube (in Russian), Preprint IPM Akademii Nauk 

SSSR, Number 40, Moscow 1976.  

[19]. I.Tsvetkov, Dzhurov, V., T. Stanchev, V. Dimitrov. Exploring 

thespectralcharacteristics of materials with blasting action bythe helpof 

stereo camera. International conference: Technique, Technologies, 

Education, Security, V. Tarnovo, 2017 

[20]. https://www.slideshare.net/guisaga/monte-carlo-simulation-paul-wilmott 

[21]. Sobol sequence generator, 2010-09-16. Retrieved 2013-12-20. 

[22]. https://people.sc.fsu.edu/~jburkardt/m_src/halton/halton.html 
 

22 JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 16, 2019

https://www.slideshare.net/guisaga/monte-carlo-simulation-paul-wilmott



