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Abstract. The algorithm for solving of dynamic management problem is examined, that 

is conducted in a few stages: from discrete initial data we get optimal functional dependence; 

we find differential equalization of process; we set a management function and criterion of 

optimality; we conduct the numeral solution of problem. For a solving the method of the 

Pontryagin maximum principle  is used. Equalization of the state we write regarding Gross 

Domestic Product. An optimal management of United Kingdom system state from initial to the 

set end position is offered. 
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Introduction 

A management problem of financial flows is finding differential function of 

state, set of management function and optimality criterion as well. 

One method of solving the management problem is the method of the 

Pontryagin maximum principle [1,2,3,4].  

The process of finding the optimal functional relationship between the variables 

can be found in [5,6,7].  

At modelling of monotone processes when the amount of unknowns is 

insignificant, as research following nine functions can be used. These 

associations possess such property, that if separate values of variables X and Y 

satisfy to one of the equations average values also to it satisfy. For each of 

functions there are characteristic averages which can be arithmetical, 

geometrical and harmonic averages in this case. Correspondence of investigated 

functions and their average magnitudes is reduced in table 1.  In this 

table constba , . 

 

Table 1. Aspect of the average magnitudes characterising functions of a 

regression 
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Determination of one optimum function happens in some stages. At the first 

stage the necessary average magnitudes for variables X and Y are calculated. At 

the second stage, depending on 1 ii XXX , by means of linear interpolation 

values are calculated 
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At the third stage it is defined one of nine functions which in the best way 

describes input datas. As criterion of selection it is possible to use a condition  

min
ˆ

ˆ




Y

YY
          (2) 

The unknown constants, which are in the regression equation, are calculated by 

means of a method of least squares. This method is a basis of the regression 
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analysis and consists of performance of a following condition for function of 

errors 
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Determination of an extremum (3) for linear regression functions, is reduced to a 

solution of linear system of the algebraic equations concerning parametres a and 

b. It is proved, that this system has a unique solution and function of errors S 

reaches the minimum. For application of a method of least squares to all 

regression functions (table 1), it is necessary to transform them beforehand. This 

transformation consists in their information to a linear aspect. Unknown 

constants which are calculated from a condition (3) definitively define an aspect 

of the optimum equation of a regression.  

It is possible to continue modelling of initial process and receive the concrete 

differential equation which maps an investigated appearance. The constants 

entering into this differential equation are directly connected with the constants 

entering in the regression equation. In table 2 we will reduce values of constants 

a and b, which are calculated from condition (3), and also a corresponding 

boundary value problem for every regression equations. In this table following 

labels numerical magnitudes are used: )(XM - expectation; )(XD  - a variance; 

)()()()( YMXMXYMXYK   - the correlative moment. Thus, knowing the 

optimum regression formula it is possible to construct corresponding 

mathematical model in the form of the differential equation.  

 

Table 2. - Correspondence of the regression formula and a boundary value 

problem of Cauchy 
№ Function aspect Parametres a and b The differential 

equation 
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Quality of stochastic connection between variables Y and X (quality of the 

regression equations) can be estimated  by means of factor of determination 

which is calculated under the formula 
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The formula (4) shows, how percent from the general variance of variable Y 

explains investigated the regression equation 

 

Problem statement 

As a function of the equation of state will use the Gross Domestic Product 

(GDP). Depending on the processed raw data we obtain the corresponding 

equation of state and initial conditions (Table 2). Assume that tX  .  

As an example, consider the problem of optimal management with the initial 

data for United Kingdom [8] on the interval ];[ 0 Tt : 

Table 3: Initial data for calculation 

t Year GDP (Current 

Prices, US$ 

Billion), Y(t) 

Investment (% of 

GDP), )(1 t  

General 

government total 

expenditure (% of 

GDP), )(2 t  

General 

government 

revenue (% of 

GDP), )(3 t  

1 2011 2471,88 15,584 45,861 37,301 

2 2012 2602,49 16,411 44,48 37,542 

3 2013 2743,35 17,358 42,793 37,776 

4 2014 2890,99 18,18 41,26 37,843 

5 2015 3050,52 18,913 40,072 37,779 

6 2016 3220,42 19,601 38,704 37,384 

   Processing the data in Table 3, we find the optimal function in the form 
tabY  . Applying the method of the least squares, we obtain the unknown 
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parameters: 053276,1;0198,2342  ba . This optimal function corresponds to the 

following boundary value problem: 

abtYtbY
dt

tdY
 )(;)(ln

)(
0          (5) 

Equation (5) is the equation of studied system state, with the initial condition. 

Find the optimal functional dependence for )(2 t - general government total 

expenditure (% of GDP) on the interval ];[ 0 Ttt : 

tt 444057,12492,47)(2           (6) 

Thus, we obtain a mathematical formulation of the overall cost management 

problem for the state  

We will consider raising and solution of a few optimization problems. 

Problem A  

The equation of state of the system: 

)()(ln
)(

tUtbY
dt

tdY
          (7) 

Initial conditions: 

abtY )( 0            (8) 

Management function has following form: 

tabttU )()( 2           (9) 

where )(2 t  has the form (6). 

Optimality condition is maximization the discounted difference between the 

values of investment (% GDP) - )(1 t , general government revenue (% GDP) - 

)(3 t  and general government total expenditure (% GDP) - )(2 t for a certain 

period and has the form: 

max)())()()()(exp(

0

231  dttYtttt
T

t

       (10) 

where   - discount coefficient; 0)(),( 31 tt  . 

Thus, it is necessary to maximize the integral equation (10) when the conditions 

(7) - (9) are fulfilled. 
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To solve the problem we apply the Pontryagin maximum method [3].  

We write the Hamiltonian function: 

)()}()()(){exp()}(ln)(){()( 2312 tYtttttbYabtttH t      (11) 
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For the auxiliary function transversality is carried out 
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By analyzing the Hamiltonian (12) we obtain an optimal investment strategy: 
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As a function )(tY  we use the solution of boundary problem (7), (8) with the 

function of management in a form (9). Assume that  constt )(2 . 
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Has the form: 
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The solution (19) with constraints (17) has the form: 
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Time of switching  company’s investments is obtained from condition (14) 
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Numerical examples 

As a numeral experiment following basic data is used: 

616,2466)1(;6;1;37843,0;19601,0;01,0 031  YTt  

While solving equalization (21), we find a switchpoint 065,1*

1 t . Optimal 

distribution of management function comes  true taking into account a 

switchpoint. 

Problem B 

Equalization of the state, initial conditions and management  function look like 

(7) - (9) accordingly, and the condition of optimality we will take in a form: 

 
T

t

t dtabttYttt

0

max})()())()(){(exp( 231       (22) 

To solve the problem we apply the Pontryagin maximum method [3].  

We write the Hamiltonian function: 
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By analyzing the Hamiltonian (24) we obtain an optimal investment strategy 
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Solution (26) assuming (17) 

Has the form: 
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The solution (28) with constraints (17) has the form: 
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 ]ln)(lnexp[)exp()( btbTtEt         (29)

  

Time of switching  company’s investments is obtained from condition (15) 

)
1

ln(
ln
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1
E

E

b
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





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Numerical examples 

As a numeral experiment we will set following initial problem data of A. 

While solving equalization (30), we find a switchpoint 32,4*

1 t . Thus, for the 

founding of optimal solution it is necessary to take into account the found 

switchpoint. We will notice that a switchpoint in the problem A is before, than 

in the problrm B at the same initial conditions.  

Conclusion 

The algorithm of initial problem construction is used for a further analysis. 

Optimal functions and corresponding to them boundary problem are got. A 

solution of a few optimal management problem is shown through the method of 

the Pontryagin maximum principle. 
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