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ABSTRACT: Monte Carlo method is the only viable method for high-dimensional 
problems since its convergence is independent of the dimension. In this paper we implement 
and analyze the computational complexity of the Latin hypercube sampling algorithm. We 
compare the results with Importance sampling algorithm which is the most widely used 
variance reduction Monte Carlo method. We show that the Latin hypercube sampling has 
some advantageous over the importance sampling technique. 
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1 Introduction 
Monte Carlo methods always produce an approximation to the solution of 

the problem or to some functional of the solution, but one can control the 
accuracy in terms of the probability error [4]. An important advantage of the 
Monte Carlo methods is that they are suitable for solving multi-dimensional 
problems [3], since the computational complexity increases polynomially, but 
not exponentially with the dimensionality. Another advantage of the method is 
that it allows to compute directly functionals of the solution with the same 
complexity as to determine the solution. In such a way this class of methods can 
be considered as a good candidate for treating innovative problems related to 
modern areas in quantum physics and finance. The Monte Carlo methods for 
multidimensional integrals can be used in problems where the data is taken in 
randomized way such that locating targets or searching for radio signals. 
Multidimensional numerical quadratures are of great importance in these areas. 
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The crude Monte Carlo method has rate of convergence O(N −1/2), which 
is independent of the dimension of the integral, and that is why Monte Carlo 
integration is the only practical method for many high-dimensional problems. 
Much of the efforts to improve Monte Carlo are in construction of variance 
reduction methods which speed up the computation. Importance sampling (IS) 
is probably the most widely used Monte Carlo variance reduction method, [1]. 
One use of importance sampling is to emphasize rare but important events, i.e., 
small regions of space in which the integrand is large [5]. One of the difficulties 
in this method is that sampling from the importance density is required, but this 
can be performed using acceptance-rejection. It is also known that importance 
sampling can greatly increase the variance in some cases, [10]. In Hesterberg 
(1995, [6]) a method of defensive important sampling is presented; when 
combined with suitable control variates, defensive importance sampling 
produces a variance that is never worse than the crude Monte Carlo variance, 
providing some insurance against the worst effects of importance sampling. 
Defensive importance sampling can however be much worse than the original 
importance sampling. Owen and Zhow (1999) recommend an importance 
sampling from a mixture of m sampling densities with m control variates, one 
for each mixture component. In [10] it is shown that this method is never much 
worse than pure importance sampling from any single component of the 
mixture. 

 
The layout of the rest of this paper is as follows. The next Section 2 

discusses the problem that we are considered in this paper. Section 3 describes 
the Latin hypercube sampling algorithm (LHS). The numerical experiments and 
results are given in Section 4. Finally, some conclusions have been made 
concerning the advantages and disadvantages of the algorithms studied. 

 
2 Description of the problem 
Consider the problem of approximate integration of the multiple integral: 

 
where    . 
For small values of d, numerical integration methods such as Simpson’s 

rule or the trapezoidal rule (see Davis and Rabinowitz [2]) can be used to 
approximate the integral (1). These methods, however, suffer from the so-called 
curse of dimensionality and be-come impractical as s increases beyond 3 or 4. 
The Crude Monte Carlo method has rate of convergence O(N −1/2), where N is 
the number of samples, which is independent of the dimension of the integral, 
and that is why Monte Carlo integration is the only practical method for many 
high-dimensional problems. 
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3 Latin Hypercube Sampling 
The main problem of some of the widely used Monte Carlo methods such 

as Importance sampling is that a sample that is very close to another does not 
provide much new information about the function being integrated. One 
powerful variance-reduction technique that addresses this problem is called 
stratified sampling. Stratified sampling works by splitting up the original 
integral into a sum of integrals over sub-domains. In its simplest form, stratified 
sampling divides the domain Gd into N sub-domains (or stratas) and places a 
random sample within each of these intervals. A quantity of interest is the 
variance of the obtained approximation, considered as a random variable. It can 
be shown that stratified sampling can never result in higher variance than pure 
random sampling [11]. If N = 1, we have random sampling over the entire 
sample space (see [12]). 

The Latin hypercube sampling (LHS) was described by McKay in 1979 
[8]. If we wish to en-sure that each of the input variables xi has all portions of its 
distribution represented by input values, we can divide the range of each xi, in 
our case the interval [0,1], into M strata of equal marginal probability 1/M, and 
sample once from each stratum. In the case of integral approximation we must 
simply divide the interval [0,1] into M disjoint intervals, each of length 1/M and 
to sample one point from each of them. Let this sample be Xkj, for dimensions k 
= 1,..,d, j = 1,…, M. Those of them having first index k (k = 1,…, d) are the 
different components for the k-th dimension of the random points that are used 
for the integral’s approximation. These components are matched at random. 
Thus the maximum number of combinations for a Latin Hypercube of M 
divisions and s variables (i.e., dimensions) can be computed by the formula 
(M!)d-1. In the context of statistical sampling, a square grid containing sample 
positions is a Latin square if (and only if) there is only one sample in each row 
and each column. Thus following the described algorithm, we obtain a set of 
points with positions forming a Latin square. Note that this sampling scheme 
does not require more samples for more dimensions (variables); this 
independence is one of the main advantages of LHS scheme. In LHS one must 
first decide how many sample points to use and for each sample point remember 
in which row and column the sample point was taken. 

Note that such configuration is similar to having N rooks on a chess board 
without threatening each other.  

There are examples of random, stratified and Latin hypercube samplings 
with 16 points in [7]. A Latin hypercube is the generalisation of this concept to 
an arbitrary number of dimensions, whereby each sample is the only one in each 
axis-aligned hyperplane containing it. To prove that the variance of the LHS is 
smaller than the variance of IS we use a theorem proved in [8]. 

Generally, the time complexity of the algorithm depends on the integrand. 
However, it follows easily that the computational complexity of the Latin 
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hypercube sampling is linear, we will have only a constant number of additional 
operations compared to the regular Crude MC method and it is easy to show 
that the computational complexity of the crude Monte Carlo is linear. 

 
4 Numerical example 
We want to compute the following 7 dimensional integral: 

 
We will use the IS algorithm with probability density function 

 
The value of ƞ must be found separately. It is equal to the value of the 

integral  
We evaluate the last integral with Crude Monte Carlo method for a number 

of samples N = 105. After that we use the method of selection (the acceptance-
rejection method). The idea of the method is given by the following graphics: 

 
 
 
 

 
 
 
 
 
 

 
We choose density q(x), and constant M, such that f(x) ≤ M.q(x), then we 

generate a random variable with density q(x) and its value x0 is accepted with 
probability density function p(x0). In our realization we use the probability 
density function q(x) = 1 and constant M=e/ƞ. We are also using two quasi-
Monte Carlo methods just for a quick comparison. The detailed comparison 
between Sobol algorithm and Lattice rule based on Fibonacci numbers will be 
an object of a future study. We obtain the following graphics given below for 
the relative error and the total amount of time for performing each of the 
algorithms- see Figure 1 and Figure 2. 
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Now we make a comparison between the Latin hypercube sampling (LHS) 
and the importance sampling (IS) and crude Monte Carlo which is the goal of 
this paper. As we expected LHS outperforms IS by far. The results are given in 
the tables below. Each table contains information about the MC approach which 
is applied, the obtained relative error, the needed CPU time and the number of 
points. 

It can be seen than the CPU time for the Latin hypercube sampling and 
crude MC method is equal, while importance sampling method needs much 
higher time. It can be seen that for large number of samples the LHS 
outperforms the importance sampling. Therefore the Latin hypercube sampling 
is definitely better from the Importance sampling method for computing 
multidimensional integrals. 

 
 
Table 1. Relative error for 7 dimensional integral for given number of 

samples 
N Crude time LHS time IS time 
1000 7.28e-2 0.15 2.46e-3 0.13 6.61e-3 3.1 
5000 2.71e-2 0.75 9.03e-4 0.71 3.35e-3 15.8 
10000 5.92e-3 1.52 4.43e-4 1.50 1.09e-3 30.2 
25000 3.73e-3 3.51 1.10e-4 3.27 7.51e-4 74.5 
100000 1.62e-3 13.87 7.26e-5 14.02 5.41e-4 315 
1000000 8.02e-4 104 6.26e-6 110 2.53e-4 3056 
 
 

Table 2. Relative error for 7 dimensional integral and equal execution times 
time,sec. Crude LHS IS 
0.1 2.38e-2 2.37e-3 5.51e-2 
1 8.87e-3 3.37e-4 2.31e-2 
5 5.16e-3 1.38e-4 8.05e-3 
10 1.28e-3 8.78e-5 4.91e-3 
20 2.03e-3 6.87e-5 2.58e-3 
100 8.61e-4 7.01e-6 7.18e-4 
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