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ABSTRACT: In this paper we implement and analyze the performance of Faure quasi-
random sequence. We compare the results with the Sobol quasi-random sequence which is 
the most widely used quasi-Monte Carlo method. Also some experiments between Faure 
sequence and the plain (Crude) Monte Carlo method are given. We consider a case study 
with a non-smooth integrand function. We show that the Sobol sequence has some 
advantageous over the Faure sequence.  
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Introduction 
High dimensional integrals are usually solved with Monte Carlo algorithms 

and quasi Monte Carlo algorithms. Monte Carlo method is the only viable 
method for high-dimensional problems since its convergence is independent of 
the dimension. Monte Carlo methods give statistical estimates for the 
functional of the solution by performing random sampling of a certain random 
variable whose mathematical expectation is the desired functional. Monte Carlo 
methods are methods of approximation of the solution to problems of 
computational mathematics, by using random processes for each such problem, 
with the parameters of the process equal to the solution of the problem. The 
method can guarantee that the error of Monte Carlo approximation is smaller 
than a given value with a certain probability [5]. The most  important advantage 
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of the Monte Carlo methods is that they are suitable for solving multi-
dimensional problems, since the computational complexity increases linearly and 
not exponentially with the dimensionality [5,14]. The MC method is a widely 
used tool in many fields of science. 

In the last few years new approaches have been developed that outperform 
standard Monte Carlo in terms of numerical efficiency. It has been found that 
there can be efficiency gains in using deterministic sequences rather than the 
random sequences which are a feature of standard Monte Carlo. These 
deterministic sequences are carefully selected so that they are well dispersed 
throughout the region of integration. Sequences with this property are known as 
low discrepancy sequences. These sequences are often more efficient than 
standard Monte Carlo in evaluating high dimensional integrals if the integrand 
is sufficiently regular and for many finance applications this is the case. 
However it is interesting to consider multidimensional integrals of non-smooth 
function. Such integrals can be used to describe problems in ecology (Genz test 
functions) or stochastic tomography, where multidimensional integrals are used 
for statistical measures such as the highest posterior density regions and 
migration areas. 

As we already mention the multidimensional numerical quadratures are of 
great importance in many practical areas. The Monte Carlo method is known to 
be only accurate with a tremendous amount of scenarios since its rate of 
convergence is O(N −1/2). Quasi Monte Carlo methods use deterministic 
sequences that have better uniform properties measured by discrepancy. They 
are usually superior to the Monte Carlo method as they have a convergence 
rate of ((log N)d/N ), where N is the number of samples and d is the 
dimensionality of the problem under consideration.  

 
Quasi Monte Carlo algorithms for numerical integration 

Consider the problem of approximate integration of the multiple integral: 

 
where    . 

For small values of d, numerical integration methods such as Simpson’s 
rule or the trapezoidal rule can be used to approximate the integral. These 
methods, however, suffer from the so-called curse of dimensionality and become 
impractical as d increases.  
The crude Monte Carlo method has rate of convergence O(N −1/2) which is 
independent of the dimension of the integral, and that is why Monte Carlo 
integration is the only practical method for many high-dimensional problems. 

12 JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 12, 2017



Much of the efforts to improve Monte Carlo are in construction of variance 
reduction methods which speed up the computation or to use quasi-random 
sequences [1]. A quasi-random or low discrepancy sequence, such as the Faure, 
Halton, Hammersley, Niederreiter or Sobol sequences, is ”less random” than a 
pseudorandom number sequence, but more useful for such tasks as 
approximation of integrals in higher dimensions, and in global optimization. 
This is because low discrepancy sequences tend to sample space ”more 
uniformly” than random numbers. It is a question of interest to know which sequence 
outperforms the other. In this study we implement the Faure sequence and make a 
comparison with the Sobol sequence. The Faure sequences [8] are a digital (0, s)-
sequence over Fb with b denoting a prime (original case) or a prime power 
(general case) greater or equal to s. The s infinite generator matrices C(1),…,C(s) 
over Fb are defined by C(i) = (cjr

(i))j, r ≥ 0 with  

 

where α1,…, αs denote s distinct elements from Fb and the conventions α0 = 1 for 
all α ∈ Fb and   

For α = 1, the resulting matrix is the infinite Pascal matrix modulo the 
characteristic of  Fb; for α = 0, it is the infinite identity matrix. If s = 1 and α1 = 
0, the resulting (0, 1)-sequence is identical to the van der Corput sequence in the 
same base [17]. The algorithm for the Faure sequence follows the method of  
Henri Faure in [8] for computing quasi-random numbers.  It is a merging and 
adaptation of the routines INFAUR and GOFAUR from ACM TOMS 647. We 
use of persistent variables to improve the MATLAB implementation. The 
parameters of the Faure algorithm are described below. The input is an integer 
DIM_NUM, the spatial dimension, which should be at least 2. The other 
parameter is integer SEED, which is the seed, that indicates the index of the 
element of the sequence to be calculated.  If SEED is negative, it is effectively 
replaced by a more suitable value. The output is a real QUASI(DIM_NUM), the 
next quasi-random vector. For the output the appropriate value of  SEED have to 
be used on the next call, if the next element of the sequence is desired. For the 
Sobol sequence we use an implementation that is an adapation of the INSOBL and 
GOSOBL routines in ACM TOMS Algorithm 647 [9] and ACM TOMS 
Algorithm [1,2,3,4]. The original code can only compute the ”next” element of 
the sequence [11]. The revised code allows the user to specify the index of the 
desired element. The algorithm has a maximum spatial dimension of 40 since 
MATLAB doesn’t support 64 bit integers. A remark by Joe and Kuo [10] shows 
how to extend the algorithm from the original maximum spatial dimension of 40 
up to a maximum spatial dimension of 1111. The FORTRAN90 and C++ 
versions of the code has been updated in this way [12,15], but updating the 
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MATLAB code has not been simple, since MATLAB doesn’t support 64 bit 
integers. We use algorithm that generates a new quasi-random Sobol vector with 
each call. The routine adapts the ideas of Antonov and Saleev [1,13] . The 
parameters of the algorithm are an integer DIMNUM , the number of spatial 
dimensions. The algorithm starts with integer SEED, the ”seed” for the 
sequence. This is essentially the index in the sequence of the quasi-random 
value to be generated. On output, SEED has been set to the appropriate next 
value, usually simply SEED + 1. If SEED is less than 0 on input, it is treated 
as though it were 0. An input value of 0 requests the first (0-th) element of the 
sequence. Output is the real QUASI(DIMNUM), the next quasi-random vector 
[5].  

Numerical example and results 
Table 1: The relative error for 4 dimensional integral of a non-smooth function 
with Faure and Sobol QMC 

N Faure Time,s Sobol Time,s 
100 5.05e-2 0.03 5.67e-3 0.02 
1000 8.84e-3 0.43 8.91e-4 0.21 
10000 2.10e-3 3.93 5.51e-4 1.78 
100000 4.97e-4 42.3 5.79e-5 18.6 
10000000 1.09e-4 200 7.70e-6 119 

 
Table 2: The relative error for 4 dimensional integral of a non-smooth function 
with Faure QMC and Crude MC 

N Faure Time,s Crude Time,s 
100 5.05e-2 0.03 2.82e-2 0.003 
1000 8.84e-3 0.43 1.47e-2 0.01 
10000 2.10e-3 3.93 8.12e-3 0.11 
100000 4.97e-4 42.3 1.30e-3 1.36 
10000000 1.09e-4 200 7.35e-4 13.08 

 
Table 3: The computational time for 4 dimensional integral of a non-smooth 
function with the three methods 

time in seconds Faure Sobol Crude 
0.1 1.82e-2 1.86e-3 8.12e-3 
1 5.26e-3 7.15e-4 2.31e-3 
5 1.86e-3 2.03e-4 9.81e-4 
10 8.22e-4 9.75e-5 7.67e-4 
60 3.90e-4 8.91e-6 5.11e-4 

14 JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 12, 2017



We will test Faure and Sobol sequence for evaluating the following 
multidimensional integral of non-smooth integrand function, taken from the 
paper of Ivan Dimov and Rayna Georgieva [6]: 
 

 
 
where the integration is over the unit 4-dimensional hypercube. The referent 
value of the integral is 7.22261 [6,7]. 

As can been seen from the table for 4 dimensional integral, the low 
discrepancy sequence of Sobol produces more rapid convergence, and lower 
errors, than the Faure sequence and the pseudorandom sequence. This is as 
anticipated since the pseudo randomly obtained averages converge at the rate 
O(N−1/2),while the quasi randomly obtained averages converge at a rate closer 
to O(N−1). As expected the Sobol sequence gives better results than the Faure 
sequence.  It is interesting to see that for a given number of samples the Faure 
sequence gives better relative error than the Crude Monte Carlo algorithm – see 
Table 2, but the latter is between 10 and 20 times faster. It is interesting that for 
a preliminary given time up to 10s the Crude MC gives a little bit better results 
than the Faure sequence – see Table 3, but for 60s the Faure sequence starts 
producing better results. This means that Faure sequence has advantage over 
Crude MC only or large number of samples and for higher computational time. 
For a preliminary given time of only 1s Sobol sequence gives relative error of 
7.15e-4 and Faure sequence gives relative error of 5.26e-3 which is already a 
sufficient accuracy. Definitely for larger number of points and for a preliminary 
given time, the advantage of Sobol quasi-random sequence in place of both 
Crude MC and Faure QMC should become even more pronounced – see Table 1 
and Table 3. For this example of non-smooth integrand function even the first 
derivative does not exist. Such kind of applications appears also in some 
important problems in financial mathematics and stochastic tomography. It 
should be mentioned that in the case of a smooth integrand functions the results 
with the methods under consideration are even more precise. In the future a 
comparison with other sequences like Halton sequence will be done. 
 

Conclusion 
In this paper we analyze the performance of plain Monte Carlo algorithm 

and two quasi Monte Carlo methods for multidimensional integrals. The Sobol 
quasi-random sequence is compared with the Faure sequence and the results are 
very precise for the multidimensional integrals under consideration, which 
shows the strength of the presented algorithm for relatively low dimensions. We 
consider an example of non-smooth integrand function which is the more 
complicated case compared to examples of smooth integrand functions. 
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For this particular example the stochastic algorithms under consideration 
produce reliable results. While Sobol sequence is a lot better than the 
pseudorandom sequence, the Faure sequence gives similar results to the Crude 
Monte Carlo algorithm. The experiments show that for a preliminary given time 
the Crude Monte Carlo algorithm outperform the Faure sequence, but for a 
given number of samples the Faure sequence gives better results than the 
pseudorandom sequence. The multidimensional integral under consideration is 
with non-smooth integrand which is more difficult case than the smooth 
integrand function. This multidimensional integral can be applied to various 
problems where data is taken in randomized way like stochastic tomography 
connected with people migration.  International migration is a topic that is 
attracting a significant level of interest in current political debate and is high on 
the agenda for policy makers in central and local government [16]. One area of 
debate is the impact of student migration, for example, on net migration. 
Stochastic methods under consideration are an efficient way to solve problems 
like the mentioned above that are described with multidimensional integrals of 
both smooth and non-smooth functions. It will be interesting to compare Faure 
sequence with Halton and Niederreiter sequences, but this will be an object of a 
future study. 
 

Acknowledgement  
This work was supported by Program for career development of the Young 

scientists, BAS, Grant No. DFNP-91/04.05.2016 as well as the Bulgarian 
National Science Fund under Grant DFNI I02-20/2014.  
 
References 
[1]. I.A. Antonov, V.M. Saleev, An Economic Method of Computing LP Tau-

Sequences, USSR Computational Mathematics and Mathematical Physics, 
Volume 19, 1980, pages 252-256.                

[2]. Paul Bratley, Bennett Fox, Algorithm 659: Implementing Sobol's 
Quasirandom Sequence Generator, ACM Transactions on Mathematical 
Software, Volume 14, Number 1, March 1988, pages 88-100.                                   

[3]. Paul Bratley, Bennett Fox, Harald Niederreiter, Implementation and Tests 
of Low Discrepancy Sequences, ACM Transactions on Modeling and 
Computer Simulation, Volume 2, Number 3, July 1992, pages 195-213.                                 

[4]. Paul Bratley, Bennett Fox, Linus Schrage, A Guide to Simulation, 
Second Edition, Springer, 1987, ISBN:0387964673, LC: QA76.9.C65.B73. 

[5]. I. Dimov, Monte Carlo Methods for Applied Scientists, New Jersey, 
London, Singapore, World Scientific, 2008, 291p.  

[6]. I. T. Dimov, R. Georgieva, Tz. Ostromsky, Z. Zlatev. Advanced 
Algorithms for Multidimensional Sensitivity Studies of Large-scale Air 
Pollution Models based on Sobol Sequences. Special issue of Computers 

16 JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 12, 2017



and Mathematics with Applications 65 (3), “Efficient Numerical Methods 
for Scientific Applications”. Elsevier, 2013, 338 – 351. ISSN: 0898-1221 

[7]. I. T. Dimov, R. Georgieva. Multidimensional Sensitivity Analysis of 
Large-scale Mathematical Models. O.P. Iliev et al. (eds.), Numerical 
Solution of Partial Differential Equations: Theory, Algorithms, and Their 
Applications, Springer Proceedings in Mathematics & Statistics 45, 
Springer Science Business Media, New York, 2013, 137 – 156. 

[8]. Henri Faure,  Discrepance de suites associees a un systeme de numeration 
(en dimension s), Acta Arithmetica, Volume 41, 1982, pages 337-351. 

[9]. Bennett Fox, Algorithm 647: Implementation and Relative Efficiency of 
Quasirandom Sequence Generators, ACM Transactions on Mathematical 
Software,Volume 12, Number 4, pages 362-376, 1986.            

[10]. Stephen Joe, Frances Kuo, Remark on Algorithm 659: Implementing 
Sobol's Quasirandom Sequence Generator, ACM Transactions on 
Mathematical Software, Volume 29, Number 1, March 2003, pages 49-57.  

[11]. Harald Niederreiter, Random Number Generation and quasi-Monte Carlo 
Methods, SIAM, 1992, ISBN13: 978-0-898712-95-7, LC: QA298.N54.  

[12]. William Press, Brian Flannery, Saul Teukolsky, William Vetterling, 
Numerical Recipes in FORTRAN: The Art of Scientific Computing, 
Second Edition, Cambridge University Press, 1992, ISBN: 0-521-43064-X, 
LC: QA297.N866.           

[13]. Ilya Sobol, Uniformly Distributed Sequences with an Additional Uniform 
Property, USSR Computational Mathematics and Mathematical Physics, 

[14]. I. Sobol, D. Asotsky, A. Kreinin , S. Kucherenko. Construction and 
Comparison of High-Dimensional Sobol’ Generators, 2011, Wilmott 
Journal, Nov, pp. 64-79 Volume 16, 1977, pages 236-242.    

[15]. Ilya Sobol, YL Levitan, The Production of Points Uniformly Distributed in 
a Multidimensional Cube (in Russian), Preprint IPM Akademii Nauk 
SSSR, Number 40, Moscow 1976.  

[16]. http://dera.ioe.ac.uk/25342/1/internationalstudentmigration_tcm77-
431150.pdf Population briefing. International student migration. What do 
the statistics tell us?  

[17]. http://mint.sbg.ac.at/desc_SFaure-ori.html#bib-SFaure-3 

JOURNAL SCIENTIFIC AND APPLIED RESEARCH Vol. 12, 2017 17

http://dera.ioe.ac.uk/25342/1/internationalstudentmigration_tcm77-431150.pdf
http://dera.ioe.ac.uk/25342/1/internationalstudentmigration_tcm77-431150.pdf



