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ABSTRACT: A comprehensive numerical study between randomly shifted lattice rules 
and Fibonacci based lattice rule for computing multidimensional integrals has been done. 
The methods have not been compared before and both are recommended in case of smooth 
integrands. The two stochastic methods are completely different thus it is not trivial of 
which one of them outperforms the other. We consider a case study with smooth integrand 
functions of different dimensions.   
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Introduction 
Nowadays Monte Carlo (MC) and quasi-Monte Carlo (QMC) methods 

have become a popular computational device for many problems. 
Multidimensional integrals are usually solved with MC and QMC algorithms 
[11]. New approaches have been developed that outperform standard MC 
algorithm in terms of numerical efficiency [1]. It has been found that there can 
be efficiency gains in using deterministic sequences rather than the random 
sequences which are a feature of standard Monte Carlo [5]. The crude Monte 
Carlo method has rate of convergence   O(N −1/2) which is independent of 
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the dimension of the integral, and that is why Monte Carlo integration is the 
only practical method for many high-dimensional problems [2]. Much of the 
efforts to improve MC methods are in construction of variance reduction 
methods which speed up the computation or to use quasi-random sequences [4]. 
QMC methods use deterministic sequences that have better uniform properties 
measured by discrepancy [12]. They are usually superior to the MC methods 
as they have a convergence rate of ((log N)s/N ), where N is the number of 
samples and s is the dimensionality of the problem under consideration.  
 

Basic Definitions 
 
Let Gs denote the unit cube in s-dimensional space [23]: 

 
Let n1 < n2 < ... be a sequence of positive integers, and let Pnl be any set of nl 
points in Gs. (Here a set may have multiple copies of the same point.) For any r 
= (r1,..., rs) note that r1...rs  is the volume of the box [0; r). Let Nnl(r) denote the 
number of points in Pnl lying inside the box [0; r). The discrepancy of the set 
Pnl is defined as the largest difference between the proportion of points in the 
box and the volume of the box: 
 

 
 
This notion was introduced byWeyl (1916). If D(nl) = o(1) as nl goes to infinity, 
then the sequence of sets Pnl ,  
n1 < n2 < ... is said to be uniformly distributed on Gs with discrepancy D(nl). 
The subscript l is often omitted for simplicity. Not only is the discrepancy a 
geometric method for measuring uniformity of a set, the discrepancy of a set 
measures its quality for use in numerical quadrature. The error of this 
approximation is bounded by the Koksma-Hlawka inequality [14]: 
 

 
 
where D(n) is the discrepancy of the set 
 

 
and V( f ) is the bounded variation of f in the sense of Hardy and Krause. If the 
integrand is smoother and also periodic, then better error bounds may be 
obtained, in particular for quadrature rules using lattice point sets. 
The lattice S is an infinite set of points with the following three properties 
[16,17]: 
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1. If x and x' belong to S , then x + x' and x - x' also belongs to S . 
2. S contains s linearly independent points. 
3. There exists a sphere centered at 0 that contains only 0 itself. 
By a ”lattice rule” then, we shall mean a rule of the form  
 

 
 
in which x0,...,xN-1 are all the points of a multiple-integration lattice that lie in 
Gs. The cubic lattice is 
 

 
 
where n is a positive integer. The corresponding lattice rule is the ”rectangle 
rule” 

 
 
where N = ns. Because N rises very rapidly with s, the rectangle rule suffers in a 
very obvious way from the ”curse of dimensionality.” Note that this rule is 
equivalent, because of the assumed periodicity, to a product-trapezoidal rule. 
Lattice rules are based on the use of deterministic sequences rather than random 
sequences. They are a special type of so-called low discrepancy sequences. It is 
known that as long as the integrand is sufficiently regular, lattice rules 
outperform the basic Monte Carlo method and most of the other types of low 
discrepancy sequences [8,12]. 
 
Fibonacci based lattice rule for numerical integration 
There are constructions of sequences known such that for their discrepancy: 

 
Here C is a certain constant, depending on the sequence. These sequences are 
believed to have the best possible order of convergence.  
The monographs of Sloan and Kachoyan [18], Niederreiter [15],  Hua and Wang 
[9], Wang and Hickernell [23] and Sloan and Joe [17] provide comprehensive 
expositions of the theory of integration lattices.  
Let n be an integer, and a =( a1,...,as) be an integer vector modulo n. A set of the 
form [19]  
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is called a lattice point set, where {x} denotes the fractional part of x. The vector 
a is called a lattice point or generator of the set. As one can see, the formula for 
the lattice point set is simple to program. The difficulty lies in finding a good 
value of a, such that the points in the set are evenly spread over the unit cube. 
The choice of good 
generating vector, which leads to small errors, is not trivial [9,10]. Complicated 
methods from theory of numbers are widely used, for example Zaremba’s index 
or error of the worst function. We consider the following generating vector 
based on generalized Fibonacci numbers of corresponding dimensionality 
[9,23]: 
 

 
where 
 

 
with initial conditions 
 

 
for l=0,1,… 
The discrepancy of the set obtained by using the vector described above is 
asymptotically estimated in [9].  
The number of calculation required to obtain the generating vector is O(ln nl). 
The generation of a new point requires constant number of operations, thus to 
obtain a lattice set of the described kind consisting of nl points, O(ln nl) number 
of operations are necessary. However the discrepancies of the lattice point sets 
obtained by these two methods have larger upper bounds than those obtained by 
Korobov's method [17,18]. 

Randomly shifted lattice rules 

The method is developed by Dirk  
Nuyens in [12,13]. Given a generating vector z of integers, the k-th point of the 
sequence is given by 
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where φ is typically the radical inverse or the gray coded radical 
inverse function in the base of the lattice sequence. The radical inverse of an 
integer k with m digit  base b expansion  
 

 
 
is obtained by mirroring the digits at the fractional point, i.e., 
 

 
 
Obviously the result is a rational in bm and an alternative view is thus to look at 
this mapping as a permutation of the integers in {0,…,bm−1}. In other words we 
are reversing the digits. Luckily, in base 2 reversing digits can be done 
efficiently. There is a Matlab/Octave and a C++ version to reverse bits 
developed by Dirk Nuyens in [13]. To obtain the radical inverse in base 2 of an 
unsigned 32 bit integer then just requires scaling the result of the bit reversion 
by 2−32. 
Working in gray code ordering has speed advantages for digital nets (and 
sequences) but less so for lattice sequences. The comparison with the digital 
sequences will be a future study. 

Sobol Sequences 

Sobol sequences (also called LPτ sequences or (t, s) sequences in base 2) are an 
example of quasi-random low discrepancy sequences. The Sobol quasi-random 
sequences was first introduced by the Russian mathematician Ilya M. Sobol in 
1967 [19] and later described in [20]. We use an adaptation of the INSOBL and 
GOSOBL routines in ACM TOMS Algorithm 647 [4] and ACM TOMS 
Algorithm 659 [3]. The original code can only compute the "next" element of 
the sequence. The revised code allows the user to specify the index of the 
desired element [21]. These sequences use a base of two to form successively 
finer uniform partitions of the unit interval and then reorder the coordinates in 
each dimension. In his article, Sobol described Πτ-meshes and LPτ sequences, 
which are (t,m,s)-nets and (t,s)-sequences in base 2 respectively. The terms 
(t,m,s)-nets and (t,s)-sequences in base b (also called Niederreiter sequences) 
were coined in 1988 by  Niederreiter [15]. The term Sobol sequences was 
introduced in late English-speaking papers in comparison with Halton, Faure 
and other low-discrepancy sequences. A more efficient gray code was proposed 
by Antonov and Saleev in [16].   
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Numerical example and results 

We will test the performance of the randomly shifted lattice rule (RSLR) 
based on a special choice of the generating vector obtained with the fast 
component by component construction developed by Dirk Nuyens 
[12,13] and a particular lattice rule with generating vector, based on the 
generalized Fibonacci numbers of the corresponding dimensionality 
(FIBO) on multidimensional integrals of smooth functions of different 
dimensions. A comparison with Sobol quasi-random sequence (SOBOL) 
for a preliminary given computational time will be given. We will be 
interested which of the methods gives lowest relative errors for 1 minute. 
We consider  examples of 4, 10 and 25 dimensional integrals of smooth 
integrands. The computational time is given in seconds. We have used 
CPU Intel i5 2410M and 8GB of ram for running the numerical 
experiments and the computations have been done with Matlab. 

Example 1. 

 

Exampe 2. 

 

Example 3. 
 

 
 
 

Table 1: The relative error for 4 dimensional integral 
N FIBO Time RSLR Time 

100 1.39e-1 0.001 1.31e-1 0.002 
1000 9.27e-3 0.01 3.83e-3 0.02 

10000 7.90e-4 0.09 5.76e-3 0.22 
100000 3.40e-4 1.10 4.29e-4 2.24 

1000000
0 

2.68e-5 5.79 1.38e-5 16.5 
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Table 2: The computational time for 4 dimensional integral 
 

time in seconds FIBO SOBOL RSLR 
0.1 9.27e-3 5.17e-3 3.44e-3 
1 3.26e-4 5.37e-5 7.21e-4 

10 7.21e-6 1.43e-5 9.21e-5 
60 9.10e-8 2.68e-7 5.51e-6 

 
Table 3: The relative error for 10 dimensional integral 

N FIBO Time RSLR Time 
100 8.35e-1 0.001 5.77e-1 0.002 
1000 1.47e-1 0.08 6.72e-2 0.02 

10000 4.21e-2 0.12 8.71e-3 0.25 
100000 1.02e-2 0.91 9.57e-4 2.37 

1000000
0 

1.08e-3 6.27 1.95e-4 14.01 
 

Table 4: The computational time for 10 dimensional integral 
 

time in seconds FIBO SOBOL RSLR 
0.1 9.82e-2 1.06e-2 5.94e-2 
1 4.58e-2 9.15e-2 8.12e-3 

10 1.37e-2 9.93e-4 3.16e-4 
60 1.28e-3 1.38e-4 1.65e-5 

 
Table 5: The relative error for 25 dimensional integral 

N FIBO Time RSLR Time 
1000 9.84e-1 0.03 2.77e-1 0.04 

10000 7.10e-1 0.11 9.70e-2 0.31 
100000 1.97e-1 0.81 1.42e-3 2.59 
1000000
0 

9.09e-2 6.40 7.04e-4 11.1 
 

Table 6: The computational time for 25 dimensional integral 
time in seconds FIBO SOBOL RSLR 
0.1 7.10e-1 2.50e-1 4.22e-1 
1 1.21e-1 1.09e-1 1.13e-1 
10 8.86e-2 1.85e-2 4.43e-3 
60 7.13e-2 9.21e-3 1.15e-4 
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In the Table 1,3 and 5 are presented the relative error for the 4,10 and 25 
dimensional integrals with Fibonacci lattice sequence (FIBO) and randomly 
shifted lattice rule (RSLR) for a fixed number of points. In Table 2,4,6 are 
presented the relative errors for 4,10 and 25 dimensional integrals with Sobol 
quasi-random sequence (SOBOL), FIBO and RSLR for a fixed computational 
time which is a measure of the computational complexity. Obviously FIBO has 
the lowest computational complexity and is the fastest algorithm, while RSLR 
and SOBOL are slower, because they need an additional time for generating the 
corresponding low discrepancy sequences. As can been seen from the results for 4 
dimensional integral, the randomly shifted lattice rule produces more rapid 
convergence, and lower errors, than the Fibonacci lattice sequence for a given 
number of realizations of the random variable-see Table 1, but for a fixed 
computational time- Fibonacci sequence gives better results- see Table 2. It can 
be seen that for lower dimensions FIBO is better than Sobol for a fixed computational 
time. Therefore Fibonacci lattice rule is the best choice for low dimensional integrals. For 
the 10-dimensional integral RSLR gives lower relative errors than the Fibonacci 
algorithm- see Table 3. For a preliminary given time in seconds Sobol and RSLR gives 
better results than Fibonacci-see Table 4. We can conclude that for mid and high 
dimensions RSLR sequence gives more reliable results than FIBO and it can be 
successfully compete with one of the best quasi-random sequences of Sobol.  
For 25- dimensional integral as expected FIBO produces the worst results, while 
randomly shifted lattice rule is more appropriate is clearly better - see Table 5. 
For a fixed computational time RSLR again gives lower relative errors than - see 
Table 6. For higher dimensions the errors can not be small. However, RSLR 
gives sufficient accuracy. This multidimensional integral can be applied to 
various problems [2] where data is taken in randomized way [6]. They are often 
used in physical problems [7] and are most useful when it is difficult or 
impossible to use other mathematical methods. This multidimensional integral 
can be applied to various problems like stochastic tomography connected with 
people migration. International migration is a topic that is attracting a significant 
level of interest in current political debate and is high on the agenda for policy 
makers in central and local government. In our previous paper [22] we described 
the Hammersley sequence and the comparison with the randomly shifted lattice 
rule and other types of low discrepancy sequences will be an object of a future 
study. 
Conclusion 
In this paper we analyze the performance of different quasi-Monte Carlo methods 
for multidimensional integrals. Stochastic methods under consideration are an 
efficient way to solve the problem under consideration. Clearly the progress in 
this area is closely connected with developing fast and reliable algorithm for 
multidimensional integrals. 
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