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ABSTRACT: We study multidimensional integrals with applications to international 

migration forecasting.  A comprehensive experimental study based on Latin Hypercube and 

Importance Sampling and Fibonacci based lattice rule has been done. This is the first time 

such a comparison has been made. The numerical tests show that the stochastic algorithms 

under consideration are efficient tool for computing multidimensional integrals. It is 

important in  order to obtain a more accurate and reliable interpretation of the results which 

is a foundation in international migration forecasting. 
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Introduction 

 

Monte Carlo methods are among the most widely used stochastic 

methods for solving problems in different areas. Monte Carlo methods 

always produce an approximation to the solution of the problem or to 

some functional of the solution, but one can control the accuracy in 

terms of the probability error and risk evaluation for immigrant flows 

[4]. An important advantage of the Monte Carlo methods is that they 
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are suitable for solving multi-dimensional problems [3], since the 

complexity increases polynomially, but not exponentially with the 

dimensionality [12,13,14]. Another advantage of the method is that it 

allows to compute directly functionals of the solution with the same 

complexity as to determine the solution. In such a way this class of 

methods can be considered as a good candidate for treating innovative 

problems related to modern areas in quantum physics and finance. The 

Monte Carlo methods for multidimensional integrals can be used in 

problems where the data is taken in randomized way such that locating 

targets or searching for radio signals. multi-dimensional problems [3], 

since the complexity increases polynomially, but not exponentially 

with the dimensionality. 

 Forecasting international migration is an important, yet difficult research 

task, characterized by the highest errors among the forecasts of all components 

of the demographic change [1]. Reasons for this include a lack of a 

comprehensive migration theory, difficulties in the theoretical framework of 

migration [5,6,24], uncertainty of potential explanatory variables, ignoring 

forced migration and policy elements in the forecasts, as well as poor data 

quality [3]. In order to improve accuracy of the international migration forecasts, 

attempts should be also made to improve the forecasting methodology [1,2,3].  

The main drawback of a majority  mathematical models of migration, apart from 

the event-history analysis, is that they themselves do not explicitly address the 

issue of uncertainty, important for preparing any forecast on their basis [4]. 

Although some of the models apply Markov chains [5,6,10,11], and can be 

therefore used to assess uncertainty using simulations, this possibility has not 

been explored up to date. However, the assessments of uncertainty may be also 

included in a majority of demographic models (cohort-component, multi-

regional, or multi-state) by feeding them at input with stochastic forecasts of 

particular components of demographic change. The latter may involve 

econometric forecasts and time series models, both in the sample-theory and the 

Bayesian frameworks [7,23]. 

  A fundamental problem in this methodology is the accurate evaluation of 
multidimensional integrals. High dimensional integrals are usually solved with 
Monte Carlo algorithms. Monte Carlo method is the only possible method for 
high-dimensional problems since its convergence is independent of the 
dimension. Monte Carlo methods give statistical estimates for the functional of 
the solution by performing random sampling of a certain random variable 
whose mathematical expectation is the desired functional. Monte Carlo methods 
are methods of approximation of the solution to problems of computational 
mathematics, by using random processes for each such problem, with the 
parameters of the process equal to the solution of the problem. The method 
can guarantee that the error of Monte Carlo approximation is smaller than a 
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given value with a certain probability [8]. 

 

Description of the problem 

 

Consider the problem of approximate integration of the multiple integral: 

 
where   

  . 

For small values of d, numerical integration methods such as Simpson’s 

rule or the trapezoidal rule (see Davis and Rabinowitz [19]) can be used to 

approximate the integral (1). These methods, however, suffer from the so-called 

curse of dimensionality and be-come impractical as s increases beyond 3 or 4. 

The Crude Monte Carlo method has rate of convergence O(N −1/2), where N is 

the number of samples, which is independent of the dimension of the integral, 

and that is why Monte Carlo integration is the only practical method for many 

high-dimensional problems. 

 

Importance Sampling 

 

Importance sampling is choosing a good distribution from which to simulate 

one's random variables. It involves multiplying the integrand by 1 (usually 

dressed up in a \tricky fashion") to yield an expectation of a quantity that varies 

less than the original integrand over the region of integration. For example, let 

h(x) be a density for the random variable X [21]. All we need to do to have a 

Monte Carlo estimator with zero variance is use and make sure that our density 

h is proportional to the function g. The ability to simulate independent random 

variables from h(x), or the ability to compute the density h(x), itself, implies that 

the normalizing constant of the distribution is computable, which in turn would 

imply that the original integral involving g(x) is computable. While h(x) might 

be roughly the same shape as g(x), serious difficulties arise if h(x) gets small 

much faster than g(x) out in the tails. In such a case, though it is improbable (by 

definition) that you will realize a value xi from the far tails of h(x), if you do, 

then your Monte Carlo estimator will take g(xi)=h(xi) for such an improbable xi 

may be orders of magnitude larger than the typical values g(x)=h(x) that you see 

[25]. 

 

Latin Hypercube Sampling 

 

The main problem of some of the widely used Monte Carlo methods such 

as Importance sampling is that a sample that is very close to another does not 
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provide much new information about the function being integrated. One 

powerful variance-reduction technique that addresses this problem is called 

stratified sampling. Stratified sampling works by splitting up the original 

integral into a sum of integrals over sub-domains. In its simplest form, stratified 

sampling divides the domain Gd into N sub-domains (or stratas) and places a 

random sample within each of these intervals. A quantity of interest is the 

variance of the obtained approximation, considered as a random variable. It can 

be shown that stratified sampling can never result in higher variance than pure 

random sampling [8]. If N = 1, we have random sampling over the entire sample 

space (see [8]). 

The Latin Hypercube Sampling (LHS) was described by McKay in 1979 

[18]. If one wishes to ensure that each of the input variables xi has all portions of 

its distribution represented by input values, we can divide the range of each xi, in 

our case the interval [0,1], into M strata of equal marginal probability 1/M, and 

sample once from each stratum. In the case of integral approximation we must 

simply divide the interval [0,1] into M disjoint intervals, each of length 1/M and 

to sample one point from each of them. Let this sample be Xkj, for dimensions k 

= 1,..,d, j = 1,…, M. Those of them having first index k   (k = 1,…, d) are the 

different components for the k-th dimension of the random points that are used 

for the integral’s approximation. These components are matched at random. 

Thus the maximum number of combinations for a Latin Hypercube of M 

divisions and s variables (i.e., dimensions) can be computed by the formula 

(M!)d-1. In the context of statistical sampling, a square grid containing sample 

positions is a Latin square if (and only if) there is only one sample in each row 

and each column. Thus following the described algorithm, we obtain a set of 

points with positions forming a Latin square [9]. Note that this sampling scheme 

does not require more samples for more dimensions (variables); this 

independence is one of the main advantages of LHS scheme. In LHS one must 

first decide how many sample points to use and for each sample point remember 

in which row and column the sample point was taken. Note that such 

configuration is similar to having N rooks on a chess board without threatening 

each other. A Latin Hypercube is the generalization of this concept to an 

arbitrary number of dimensions, whereby each sample is the only one in each 

axis-aligned hyperplane containing it. To prove that the variance of the LHS is 

smaller than the variance of IS we use a theorem proved in [18]. 

Generally, the time complexity of the algorithm depends on the integrand. 

However, it follows easily that the computational complexity of the LHS is 

linear, we will have only a constant number of additional operations compared 

to the regular Crude MC method and it is easy to show that the computational 

complexity of the crude Monte Carlo is linear. 
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Fibonacci based lattice rule 

 

The monographs of Sloan and Kachoyan [20] and Wang and Hickernell [22] 

provide comprehensive expositions of the theory of integration lattices.  

Let n be an integer, and a =( a1,...,as) be an integer vector modulo n. A set of the 
form [15]  

 

 

is called a lattice point set, where {x} denotes the fractional part of x. The vector 

a is called a lattice point or generator of the set. As one can see, the formula for 

the lattice point set is simple to program. The difficulty lies in finding a good 

value of a, such that the points in the set are evenly spread over the unit cube. 

The choice of good 

generating vector, which leads to small errors, is not trivial. Complicated 

methods from theory of numbers have been used. We consider the following 

generating vector based on generalized Fibonacii numbers of corresponding 

dimensionality: 

 

 
 

where 

 

 
 

with initial conditions 

 

 
 

for l=0,1,… 

The discrepancy of the set obtained by using the vector described above is 

asymptotically estimated in [21]. 

The number of calculation required to obtain the generating vector is       O(ln 

nl). The generation of a new point requires constant number of operations, thus 

to obtain a lattice set of the described kind consisting of nl points, O(ln nl) 

number of operations are necessary.  

 

Numerical example 

 

We want to compute the following 7 dimensional integral: 
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We will use the IS algorithm with probability density function 

     
The value of ƞ must be found separately. It is equal to the value of the 

integral  

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The acceptance-rejection method (the method of selection). 

 

We evaluate the last integral with Crude Monte Carlo method for a number 

of samples N = 105. After that we use the method of selection (the acceptance-

rejection method). The idea of the method is given by the Figure 1. 

 We make a comparison between the Latin Hypercube Sampling (LHS), the 

Importance sampling (IS) and the Fibonacci based lattice rule (FIBO)   which is 

the goal of this paper. As we expected LHS outperforms IS by far. The results 

are given in the Tables 1 and 2 below. Each table contains information about the 

MC approach which is applied, the obtained relative error, the needed CPU time 

and the number of points. Table 1 shows the relative error for a given number of 

samples, while in Table 2 is presented the relative error for a fixed 

computational time, which is a measure of the computational complexity of the 

algorithms. 

It can be seen than the CPU time for the Latin hypercube sampling and 

FIBO method is closer, while Importance sampling method needs much higher 
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time. Also we see that for a large number of samples the LHS and FIBO 

outperforms the importance sampling. Therefore the LHS  is definitely better 

from the Importance sampling method for computing multidimensional 

integrals. 

 

Table 1. Relative error for 7 dimensional integral for a given number of samples. 

 
N FIBO time LHS time IS time 

1000 1.03e-3 0.15 2.46e-3  0.13 6.61e-3  3.1 

5000 2.71e-2 0.75 9.03e-4  0.71 3.35e-3  15.8 

10000 3.34e-4 1.52 4.43e-4  1.50 1.09e-3  30.2 

25000 2.73e-4 3.51 1.10e-4  3.27 7.51e-4  74.5 

105 1.62e-5 13.8 7.26e-5  14.2 5.41e-4  315 

106 1.02e-6 104 6.26e-6  110 2.53e-4 3056 

 

 

Table 2. Relative error for 7 dimensional integral and equal execution times. 

 

time, 

sec. 

FIBO LHS IS 

0.1 1.38e-3 2.37e-3 5.51e-2 

1 2.87e-4 3.37e-4 2.31e-2 

5 1.16e-4 1.38e-4 8.05e-3 

10 5.28e-5 8.78e-5 4.91e-3 

20 2.26e-5 6.87e-5 2.58e-3 

100 1.61e-6 7.01e-6 7.18e-4 

 
In the Table 1 and 2 are presented the relative error for the 7  dimensional 

integrals with Fibonacci lattice sequence (FIBO), Latin hypercube sampling 

(LHS) and Importance sampling (IS) for a fixed number of points and for a fixed 

computational time. Obviously FIBO and LHS has the lowest computational 

complexity and are the fastest algorithm, while IS is slower. As can been seen 

from the results for 7 dimensional integral, the Importance sampling produces the 

worst results. It is interesting to see that FIBO and LHS gives errors of the same 

magnitude - see Table 1, but the Fibonacci lattice sequence has the advantage 

for a preliminary given time in seconds - see Table 2. So we can conclude that all 

stochastic algorithms under consideration are efficient tool for evaluation of 

multidimensional integrals related to  models in migration forecasting.  
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Conclusion 

In this paper we analyze the performance of different Monte Carlo methods for 

multidimensional integrals related to models in improving the international 

migration. Stochastic methods under consideration are an efficient way to solve 

problems in forecasting international migration. The problem of  accurate 

evaluation of the presented by multidimensional integrals.  This is the first time 

a particular 1-rank lattice rule based on Fibonacci generating vector is compared 

with the importance sampling technique. We make a comparison with the Latin 

Hypercube Sampling and it gives closer results to the Fibonacci method. It is a 

crucial element since this may be important for improving the international 

migration forecasting. 
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