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ABSTRACT: A comprehensive experimental study based on Sobol sequence, 

Importance Sampling and Fibonacci based lattice rule has been done. This is the first time 

the Sobol sequence has been compared with the Importance sampling method for the 

problem under consideration. The numerical tests show that the stochastic algorithms 

under consideration are efficient tool for computing multidimensional integrals. In order to 

obtain a more accurate and reliable interpretation of the results this is very important. 
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Introduction 

High dimensional integrals are usually solved with Monte Carlo 

algorithms. Monte Carlo method is the only possible method for high-

dimensional problems since its convergence is independent of the dimension. 

Monte Carlo methods give statistical estimates for the functional of the solution 

by performing random sampling of a certain random variable whose 

mathematical expectation is the desired functional.  Monte Carlo methods [24] 

are methods of approximation of the solution to problems of computational 

mathematics, by using random processes for each such problem, with the 
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parameters of the process equal to the solution of the problem. The method can 

guarantee that the error of Monte Carlo approximation is smaller than a given 

value with a certain probability [8]. 

 For small values of the dimensionality of the integral d, numerical 

integration methods such as Simpson’s rule or the trapezoidal rule (see Davis 

and Rabinowitz [19]) can be used to approximate the integral. These methods, 

however, suffer from the so-called curse of dimensionality and be-come 

impractical as s increases beyond 3 or 4. The Crude Monte Carlo method has 

rate of convergence O(N−1/2), where N is the number of samples, which is 

independent of the dimension of the integral, and that is why Monte Carlo 

integration is the only practical method for many high-dimensional problems 

especially in air pollution modelling, quantum mechanics, Bayesian statistics 

and international migration forecasting, see [5,6,7,9,10,11,16,17,18]. 

 

Importance Sampling 

  Importance sampling involves multiplying the integrand by 1 to yield an 

expectation of a quantity that varies less than the original integrand over the 

region of integration. For example, let h(x) be a density for the random variable 

X [21]. All we need to do to have a Monte Carlo estimator with zero variance is 

use and make sure that our density h is proportional to the function g. The 

ability to simulate independent random variables from h(x), or the ability to 

compute the density h(x), itself, implies that the normalizing constant of the 

distribution is computable, which in turn would imply that the original integral 

involving g(x) is computable. While h(x) might be roughly the same shape as 

g(x), serious difficulties arise if h(x) gets small much faster than g(x) out in the 

tails. In such a case, though it is improbable (by definition) that you will realize 

a value xi from the far tails of h(x), if you do, then your Monte Carlo estimator 

will take g(xi)=h(xi) for such an improbable xi may be orders of magnitude 

larger than the typical values g(x)=h(x) that you see [23]. 

Quasi Monte Carlo algorithm based on Sobol sequence 

For the Sobol sequence we use an implementation that is an adaptation of the 

INSOBL and GOSOBL routines in ACMTOMS Algorithm 647 and 

ACMTOMS Algorithm [1,2,3,4]. The original code can only compute the ”next” 

element of the sequence [11]. The revised code allows the user to specify the 

index of the desired element [25].                                                                                   

The algorithm has a maximum spatial dimension of 40 since MATLAB 

doesn’t support 64-bit integers. Aremark by Joe and Kuoshow show to extend 

the algorithm from the original maximum spatial dimension of 40 up to a 

maximum spatial dimension of 1111 [25]. The FORTRAN 90 and C++ versions 

of the code has been updated in this way [12,14,15], but updating the MATLAB 

code has not been simple, since MATLAB doesn’t support 64-bit integers. We 
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use algorithm that generates a new quasi-random Sobol vector with each call. 

The routine adapts the ideas of Antonov and Saleev [1,13]. The parameters of the 

algorithm are an integer DIMNUM, the number of spatial dimensions. The 

algorithm starts with integer SEED, the ”seed” for the sequence. This is 

essentially the index in the sequence of the quasi-random value to be generated. 

On output, SEED has been set to the appropriate next value, usually simply 

SEED+1. If SEED is less than 0 on input, it is treated as though it were 0. An 

input value of 0 requests the first (0-th) element of the sequence. Output is the 

real QUASI (DIMNUM), the next quasi-random vector [1,2]. 

 

Fibonacci based lattice rule 

The monographs of Sloan and Kachoyan [20] and Wang and Hickernell 

[22] provide comprehensive expositions of the theory of integration lattices.  

Let n be an integer, and a=( a1,...,as) be an integer vector modulo n. A set of the 

form [15] 

(1)  

is called a lattice point set, where {x} denotes the fractional part of x.The vector 

a is called a lattice point or generator of the set. As one can see, the formula for 

the lattice point set is simple to program. The difficulty lies in finding a good 

value of a, such that the points in the set are evenly spread over the unit cube. 

The choice of goodgenerating vector, which leads to small errors, is not trivial. 

Complicated methods from theory of numbers have been used. We consider the 

following generating vector based on generalized Fibonacii numbers of 

corresponding dimensionality: 

 

(2)  

where 

(3)  

with initial conditions 

(4)  

For l=0,1,… 
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The discrepancy of the set obtained by using the vector described above is 

asymptotically estimated in [20,22]. 

 The number of calculation required to obtain the generating vector is O(ln 

nl). The generation of a new point requires constant number of operations, thus 

to obtain a lattice set of the described kind consisting of nl points, O (lnnl) 

number of operations are necessary.  

 

Numerical example 

 We want to compute the following 7 dimensional integral: 

(5)  

We will use the IS algorithm with probability density function 

(6)  

The value of ƞ must be found separately. It is equal to the value of the 

integral  

 

 

Figure 1. The acceptance-rejection method (the method of selection) 

 

We evaluate the last integral with Crude Monte Carlo method for a number 

of samples N = 105. After that we use the method of selection (the acceptance-

rejection method). The idea of the method is given by the Figure 1. 
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 We make a comparison between the quasi-random Sobol sequence 

(SOBOL), the Importance sampling (IS) and the Fibonacci based lattice rule 

(FIBO) which is the goal of this paper. As we expected SOBOL and FIBO 

outperforms IS by far. The results are given in the Tables 1 and 2 below. Each 

table contains information about the stochastic approach which is applied, the 

obtained relative error, the needed CPU time and the number of points. Table 1 

shows the relative error for a given number of samples, while in Table 2 is 

presented the relative error for a fixed computational time, which is a measure 

of the computational complexity of the algorithms. 

 It can be seen than the CPU time hypercube sampling and FIBO method is 

the smallest, while Importance sampling method needs much higher time. Also, 

we see that for a large number of samples SOBOL and FIBO outperforms the 

importance sampling. 

N FIBO time SOBOL time IS time 

103 1.03e-3 0.15 2.27e-4 0.76 6.61e-3 3.1 

5x103 2.71e-2 0.75 2.13e-4  3.71 3.35e-3 15.8 

104 3.34e-4 1.52 1.22e-4 7.75 1.09e-3 30 

25x103 2.73e-4 3.51 8.51e-5 27 7.51e-4 74 

105 1.62e-5 13.8 4.71e-5 72 5.41e-4 315 

106 1.02e-6 104 9.45e-6 697 2.53e-4 3056 

 

Table1. Relative error for 7-dimensional integral for a given number of 

realizations of the random variable 

time, 

sec. 

FIBO SOBOL IS 

0.1 1.38e-3 1.85e-3 5.51e-2 

1 2.87e-4 1.85e-4 2.31e-2 

5 1.16e-4 9.79e-5 8.05e-3 

10 5.28e-5 8.36e-5 4.91e-3 

20 2.26e-5 5.46e-5 2.58e-3 

100 1.61e-6 2.21e-5 7.18e-4 

 

Table2. Relative error for 7-dimensional integral for a preliminary given time in 

seconds 
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In Table 1 are presented the relative error for the 7-dimensional integrals 

with Fibonacci lattice sequence (FIBO), Sobol quasi-random sequence 

(SOBOL) and Importance sampling (IS) for a fixed number of points and for a 

fixed computational time in Table 2. Obviously FIBO and SOBOL has the 

lowest computational complexity and are the fastest algorithm, while the 

Importance sampling is much slower. As can be seen from the results for 7-

dimensional integral, the Importance sampling produces the worst results. It is 

interesting to see that FIBO and SOBOL gives errors of the same magnitude - 

see Table 1, but the Fibonacci lattice sequence has the advantage being faster for 

a preliminary given time in seconds - see Table 2. For large dimensions of the 

integral the Sobol sequence outperforms the Fibonacci based lattice rule, but this 

will be an object of a future study. 

Conclusion 

In this paper we analyze the performance of Sobol quasi random 

sequence, Fibonacci based lattice rule and Importance sampling algorithm for 

computation of multidimensional integrals. Stochastic methods under 

consideration are an efficient way to solve problems in forecasting international 

migration. The problem of accurate evaluation of multidimensional integrals is 

discussed.  This is the first time a particular 1-rank lattice rule based on 

Fibonacci generating vector is compared with the importance sampling 

technique. We make a comparison with the Sobol approach and it gives closer 

results to the Fibonacci method. It is a crucial element since this may be 

important for improving the results in important areas for control of migration 

flows. This paper is funded by “Scientific Research” subsidy by University of 

Ruse 2020.  
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