

INDUSTRY 4.0+ AND THE FACTORY OF THE FUTURE: TOWARD INTELLIGENT, FLEXIBLE, AND SUSTAINABLE MANUFACTURING

Dragomir I. Vasilev

DEPARTMENT OF COMMUNICATION AND COMPUTER ENGINEERING AND SECURITY TECHNOLOGIES, FACULTY OF TECHNICAL SCIENCES, KONSTANTIN PRESLAVSKY UNIVERSITY OF SHUMEN, SHUMEN 9712, 115, UNIVERSITETSKA STR.,
E-MAIL: d.vasilev@shu.bg

ABSTRACT: The continuous evolution of industrial systems marks the transition from conventional automation toward intelligent, adaptive, and networked manufacturing ecosystems, collectively known as Industry 4.0. This transformation integrates cyber-physical systems (CPS), artificial intelligence (AI), and the Internet of Things (IoT) to create highly flexible, efficient, and responsive production environments. With the rapid advancement of 5G and the emerging 6G communication technologies, a new phase of industrial development—Industry 4.0+—is envisioned. This next-generation paradigm emphasizes ultra-low latency, machine-to-machine communication, predictive maintenance, and collaborative automation, enabling a fully connected and self-optimizing industrial environment. The paper explores the technological foundations, core principles, and practical implications of Industry 4.0+, focusing on wireless communication, motion control, AI-driven robotics, sustainability, and collective automation in the factory of the future.

KEY WORDS: Industry 4.0+, 5G, 6G, Artificial Intelligence, Cyber-Physical Systems, Smart Manufacturing, Predictive Maintenance, Collaborative Robotics.

1. Introduction

Industry 4.0 represents the fourth industrial revolution, characterized by the automation and digitalization of traditional manufacturing processes through the integration of intelligent and connected technologies. Compared with the third industrial revolution, which introduced programmable logic and early digital control, Industry 4.0 emphasizes flexibility, adaptability, and interoperability within industrial ecosystems. This new paradigm enables smart factories—production systems capable of autonomously adapting to dynamic market requirements and optimizing their own performance in real time.

The foundation of Industry 4.0 lies in cyber-physical systems (CPS)—the tight integration between computational and physical processes—where embedded sensors, actuators, and control algorithms continuously exchange data

across networks. The growing interconnection between machines, systems, and humans through the Industrial Internet of Things (IIoT) further enhances this integration, creating a new dimension of efficiency and intelligence [1].

Building upon these developments, researchers and industrial experts envision the evolution toward Industry 4.0+, a concept driven by the capabilities of next-generation wireless communication, artificial intelligence, and machine learning in real time. The integration of 6G networks will allow instantaneous data transmission with latency below one millisecond and reliability above 99.9999%, providing the foundation for autonomous manufacturing ecosystems.

While traditional industrial revolutions required decades to mature, the wireless communication industry evolves exponentially faster. Each new generation of wireless technology introduces radically enhanced features, enabling the industrial sector to innovate on shorter cycles. As a result, wireless communication and IoT-based networking have become fundamental enablers for smart manufacturing.

Although existing wireless standards—such as Wi-Fi, LTE, Bluetooth, and Zigbee—are widely deployed across modern enterprises, they have not yet replaced wired communication as the dominant medium in manufacturing environments. The main reason lies in technical constraints, including limited bandwidth, higher latency, and insufficient reliability for deterministic real-time control.

2. The Role of 5G and 6G in Smart Manufacturing

The emergence of 5G technology represents a turning point in industrial communication, offering a quantum leap in speed, reliability, and connectivity. Unlike previous generations, 5G has been designed with machine-to-machine (M2M) and machine-type communication (MTC) in mind—direct communication between devices using any available medium, wired or wireless, with ultra-low latency and high link reliability. These capabilities make it possible to establish real-time, deterministic control loops within industrial environments.

The potential of 5G extends across nearly every aspect of industrial automation. Applications of wireless technologies in industrial systems can be grouped into five major categories:

1. Manufacturing automation – precise, real-time control of production processes;
2. Process automation – continuous monitoring and regulation of physical and chemical processes;
3. Human–machine interface (HMI) and production IT systems – integration between human operators and automated processes;
4. Logistics and warehouse management – intelligent inventory systems and autonomous transport;

5. Monitoring and predictive maintenance – condition-based diagnostics and prevention of failures [2].

Typical use cases in these categories include motion control, mobile robotic panels, mobile robots, large-scale wireless sensor networks, remote access and maintenance, augmented reality (AR), closed-loop process control, and real-time production monitoring.

While some of these scenarios are already feasible with 5G technology, the most demanding applications will require next-generation communication systems. Industrial environments often impose extreme requirements—such as operation in harsh electromagnetic conditions, the presence of physical barriers, or the need to integrate with legacy wired installations—all of which call for ultra-high performance and reliability.

In this context, 6G networks are expected to play a transformative role, enabling wireless communication systems with near-zero latency, ubiquitous coverage, and integrated sensing and AI capabilities. These systems will support industrial intelligence far beyond current capabilities, laying the groundwork for *Industry 4.0+*—a stage characterized by intelligent, autonomous, and sustainable production ecosystems.

The factory of the future will thus be able to achieve a fully automated and flexible production process known as “lights-out manufacturing”—a facility capable of operating without human presence or environmental conditioning. The combination of artificial intelligence, robotics, and cyber-physical systems (CPS) will ensure maximum productivity, resource efficiency, and real-time adaptability to market needs.

3. Wireless Communication as the Foundation of Flexibility

The essential step toward flexible and customizable manufacturing lies in eliminating the physical constraints of cables. The decoupling of machines from wired infrastructure represents the foundation of industrial mobility and adaptability. Future production systems will consist of individual, self-configuring modules capable of forming and re-forming production lines in real time according to specific manufacturing requirements.

These modules will communicate via ultra-high-performance wireless channels, allowing seamless coordination with other machines, autonomous vehicles, and drones. Such integration will transform the concept of the traditional assembly line—from static, mass-production systems to on-demand, customer-oriented manufacturing processes.

Wireless communication technologies such as 5G and 6G are therefore fundamental prerequisites for this transformation. They enable the transition from static, rigidly connected production systems to dynamic, intelligent, and self-organizing manufacturing environments.

This principle forms the essence of Industry 4.0+, in which the factory is no longer a fixed physical structure but a network of interconnected, autonomous, and mobile devices that can rearrange themselves according to production demands. This paradigm supports the vision of mass personalization, where products are manufactured to meet individual customer specifications without compromising efficiency or scalability [3].

4. Artificial Intelligence and Collective Learning

The exponential growth of artificial intelligence (AI) and machine learning (ML) has profoundly transformed industrial automation. Within the framework of Industry 4.0+, AI serves as the cognitive layer that enables machines, robots, and systems to reason, learn, and adapt autonomously. Information from all systems within the manufacturing environment will be continuously collected and represented through digital twins—virtual replicas of physical systems—used for design, simulation, modeling, and optimization of production processes.

Through advanced data analytics, predictive modeling, and reinforcement learning, AI enables the identification of inefficiencies, early detection of anomalies, and real-time adaptation of processes to ensure optimal performance. Machines and robots will not only execute preprogrammed instructions but will also accumulate operational experience and knowledge that can be shared with other machines within the same production line, across different production sites, or even globally.

This machine-to-machine knowledge transfer will be supported by advanced mobile communication systems (5G and 6G), allowing one machine to utilize the collective intelligence of others, thereby improving the overall efficiency and responsiveness of the industrial ecosystem.

In many practical scenarios, multiple robots must collaborate on a single task. Such coordination cannot rely merely on physical connectivity but requires intelligent communication integration, which ensures synchronization, low latency, and mutual awareness among agents. This model of cooperation defines the principle of connected intelligence, where every component of the system acts as both a producer and a consumer of knowledge.

Through the combination of AI, big data, and cyber-physical systems, Industry 4.0+ will evolve into a network of self-learning entities capable of adapting production parameters dynamically, minimizing human intervention, and enhancing both safety and productivity.

5. Real-Time Detection and Predictive Maintenance

The factory of the future will be equipped with dense sensor networks and intelligent radio-frequency (RF) monitoring systems that continuously track the operational status of machines and processes. The resulting data will feed into

predictive maintenance systems, designed to detect anomalies before they lead to equipment failures, thereby ensuring continuous and reliable production.

These systems integrate real-time analytics and machine learning models capable of identifying deviations in machine behavior. Even minor defects—such as mechanical misalignments, vibration irregularities, or abnormal temperature fluctuations—will be detected instantly and corrected autonomously.

This level of real-time detection and intervention significantly reduces downtime, maintenance costs, and material waste while improving production safety and energy efficiency. Moreover, predictive maintenance contributes to sustainability by extending the lifespan of machinery, reducing unnecessary resource consumption, and supporting the broader goals of the low-carbon industrial transition.

The integration of 6G communication with predictive analytics will elevate maintenance from a reactive or preventive practice to a self-optimizing function embedded in the operational fabric of industrial systems. Machines will communicate directly with service robots or maintenance drones, coordinating repair actions autonomously and maintaining optimal operation without human supervision.

6. Sustainable Manufacturing and Low Carbon Footprint

As automation advances and human presence in production facilities decreases, the energy requirements of factories will be drastically reduced. In the factory of the future, there will be no need for lighting, heating, or air conditioning to maintain comfortable conditions for personnel, as production processes will operate autonomously without human supervision.

All monitoring and control activities will be performed via wireless sensor networks or through radio-frequency (RF) data collection and analysis functions integrated directly into 6G communication systems. This enables continuous observation of machine behavior and environmental conditions while maintaining minimal energy consumption.

As a result, energy efficiency and sustainability will become defining characteristics of industrial production. The elimination of redundant energy use will lead to significant reductions in carbon dioxide (CO₂) emissions, supporting the global transition toward carbon-neutral manufacturing.

Furthermore, the integration of operational technologies (OT) with information and communication technologies (ICT) will ensure that every aspect of production—from resource allocation to logistics—operates within an optimized, environmentally conscious framework. This holistic approach aligns industrial performance with the principles of the circular economy, promoting reuse, resource recovery, and long-term ecological balance.

7. Motion Control: Core of Automation and 6G Integration

The motion control system is often described as the “*brain*” of industrial machinery, orchestrating precise mechanical movements and synchronization across production lines. It plays a vital role in industries such as manufacturing, automotive engineering, electronics, and medical technology, where precision, reliability, and determinism are paramount [4].

In a closed-loop feedback system, the motion controller sends commands to one or more actuators in a strictly defined, cyclical sequence. After receiving these control signals, the actuators execute specific movements—such as rotating a robotic arm or shifting a machine component—while sensors measure parameters such as position, speed, torque, or angular displacement. The measured values are then transmitted back to the controller, forming a continuous feedback loop that ensures accuracy and stability [2].

Motion control is one of the most demanding applications in industrial automation, as it requires ultra-low latency and highly deterministic communication. The end-to-end (E2E) latency of the communication channel, encompassing the radio interface, core network, and transport layer, must be within microseconds for applications such as metal processing, robotic welding, or high-speed packaging lines. At the same time, system reliability must exceed 99.9999%, leaving virtually no room for communication failure.

Historically, such control systems have relied on wired technologies, most notably industrial Ethernet, which ensures predictable timing and stability. However, the shift from wired (Ethernet) to wireless (5G/6G) connectivity represents a critical transformation in industrial automation, enabling modular, mobile, and reconfigurable production systems.

To achieve comparable or superior performance to wired systems, wireless motion control must leverage advanced technologies, including precise time synchronization, predictable transmission scheduling, dynamic resource management, and AI-assisted load prediction. Through these capabilities, machines, robots, conveyors, and safety systems will be able to exchange data and coordinate behavior autonomously in real time.

In practice, this enables scenarios such as a robotic welding station automatically adjusting pulse strength and duration based on sensor feedback, or a packaging line dynamically altering its speed to optimize workflow. The wireless realization of feedback control will thus become a cornerstone of Industry 4.0+, enabling adaptive and self-optimizing production environments.

Ultimately, 6G networks will provide the foundational infrastructure for these systems, offering near-zero latency, high determinism, and intelligent network orchestration. Combined with AI and the Internet of Things (IoT), this will usher in a new era of industrial automation, in which every machine functions simultaneously as a sensor, actuator, and intelligent agent.

8. Collaborative Robotics and Collective Automation

The continuous advancement of robotics has positioned industrial robots as indispensable elements of modern manufacturing. They are capable of performing diverse tasks such as welding, painting, soldering, assembly, and material handling, operating with precision and repeatability that surpass human capabilities. Consequently, robots will remain a central pillar of the factory of the future.

One of the most significant application scenarios in this domain is collaborative transport, where multiple robots jointly carry large or heavy components. Safe and efficient cooperation among robots requires cyber-physical control systems that coordinate their movements with microsecond precision. Such coordination relies on ultra-reliable, low-latency communication (URLLC) and strict synchronization across the network [2].

Control commands are transmitted, and sensor data are received through periodic, deterministic communication cycles, ensuring precise coordination among robotic agents. The collective robotic workforce can handle both rigid and delicate objects that demand exceptional synchronization, as well as flexible components where minor deviations are tolerable.

In both cases, networks offering enhanced synchronization accuracy, minimal latency, and precise localization dramatically improve collaborative efficiency. For collective robotic operations, the end-to-end latency (E2E) requirement typically approaches 1 millisecond, while system reliability exceeds 99.9999%.

In the factory of the future, robots will cooperate seamlessly—not only with each other but also with machines, autonomous vehicles, and drones. This cooperation will transcend predefined programs and be grounded in environmental perception, knowledge sharing, and AI-driven decision-making.

The emerging paradigm of collaborative robotics (cobotics)—a cornerstone of Industry 4.0+—enables individual robots to function as synchronized members of a coordinated, intelligent team. By leveraging AI, cyber-physical control, and low-latency wireless communication, collaborative robots will introduce dynamic flexibility, safety, and autonomy into the manufacturing environment.

This approach will form the foundation of self-organizing factories, where machines, drones, and robots jointly perform complex operations without centralized control. The integration of these systems will revolutionize industrial automation, driving productivity while ensuring safety, efficiency, and sustainability [5].

9. Conclusion

The transition from Industry 4.0 to Industry 4.0+ represents a fundamental leap in the evolution of manufacturing systems. It signifies the convergence of

cyber-physical systems, AI, IoT, and next-generation wireless networks (5G and 6G) into an integrated, intelligent ecosystem capable of autonomous decision-making and self-optimization.

Wireless communication is no longer a supplementary feature but a core enabler of industrial flexibility and scalability. Through real-time feedback control, predictive maintenance, and collaborative robotics, the factory of the future will operate with unprecedented efficiency, precision, and sustainability.

Furthermore, the integration of AI-driven analytics and collective intelligence across machines will foster continuous learning and adaptation, ensuring that industrial ecosystems evolve autonomously to meet changing environmental and economic demands.

Ultimately, the concept of Industry 4.0+ extends beyond digital transformation—it represents the dawn of a new industrial era, where intelligent machines, autonomous systems, and humans coexist in a synergistic and sustainable production environment.

10. Acknowledgments

The author expresses sincere gratitude to the academic and industrial experts whose insights into cyber-physical systems, 6G communication, and industrial automation have contributed to the development of this work. Special thanks are extended to the research teams and institutions advancing the field of smart manufacturing for their continuous innovation and commitment to the future of sustainable industry.

This scientific article under project number RD-08-124/07.02.2025 „Renewing the research environment for collecting empirical data in measurement processes“, at Konstantin Preslavsky University of Shumen, Faculty of Technical Sciences is funded.

References:

- [1] H. Kagermann, W. Wahlster, and J. Helbig, Recommendations for Implementing the Strategic Initiative Industrie 4.0, Final Report of the Industrie 4.0 Working Group, German National Academy of Science and Engineering (acatech), 2013.
- [2] 3GPP, «Service requirements for cyber-physical control applications in vertical domains», 3rd Generation Partnership Project (3GPP), Technical Specification (TS) 22.104, 12 2019, version 17.2.0. [Online]. Available: <https://portal.3gpp.org/desktopmodules/Specifications/SpecificationDetails.aspx?specificationId=3528>.
- [3] Y. Koren, The global manufacturing revolution: product–process–business integration and reconfigurable systems. John Wiley & Sons, 2010.

- [4] 5GACIA 5G alliance for connected industries and automation, «White paper, 5G for connected industries & automation (Second Edition)», 2018, accessed Sept. 20, 2020. [Online]. Available: <https://www.5g-acia.org>.
- [5] S. Chen, Y. Liang, S. Sun, S. Kang, W. Cheng, and M. Peng, “Vision, Requirements, and Technology Trend of 6G: How to Tackle the Challenges of System Coverage, Capacity, User Data-Rate, Latency, and Power Consumption,” *IEEE Wireless Communications*, vol. 27, no. 2, pp. 218–228, Apr. 2020.