MICROPLASTS IN FRESHWATER FISH – PROBLEMS AND CHALLENGES

MICROPLASTS IN FRESHWATER FISH – PROBLEMS AND CHALLENGES

Authors

  • Polina Todorova DEPARTMENT OF BIOLOGY, FACULTY OF NATURAL SCIENCES, KONSTANTIN PRESLAVSKY UNIVERSITY OF SHUMEN, SHUMEN 9712,115, UNIVERSITETSKA STR., E-MAIL: p.todorova@shu.bg
  • Stephany Toschkova DEPARTMENT OF PHYSICS AND ASTRONOMY, FACULTY OF NATURAL SCIENCES, KONSTANTIN PRESLAVSKY UNIVERSITY OF SHUMEN, SHUMEN 9712,115, UNIVERSITETSKA STR., E-MAIL: s.toshkova@shu.bg

DOI:

https://doi.org/10.46687/jsar.v28i1.430

Keywords:

Microplastics, Ecotoxicology, Freshwater ecosystem.

Abstract

The presence of microplastics in the aquatic environment raises concerns about their abundance and potential hazards to aquatic organisms. This review provides insight into the issue that may be of concern to freshwater fish. Plastic pollution is not limited to marine ecosystems; freshwaters also contain plastic particles, as the majority of them enter the oceans via rivers. Microplastics (MPs) can be ingested by fish and accumulate due to their size and poor biodegradability. Furthermore, they have the potential to enter the food chain and cause health problems. Evidence of MP ingestion has been reported in >150 fish species from both freshwater and marine systems. However, the quantification and toxicity of microplastics in freshwater ecosystems are underestimated, ignored and not reported as often as in marine ecosystems. However, their abundance, impact and toxicity in freshwater biota are no less than in marine ecosystems. The interaction of MPs with freshwater fish, as well as the risk of human consumption, remains a mystery. However, our knowledge of the effects of MPs on freshwater fish is still very limited. This study details the state of the toxicity of microplastics (MPs) in freshwater fish. This review will add to our understanding of the ecotoxicology of microplastics on freshwater fish and provide further directions for research.

Author Biographies

Polina Todorova, DEPARTMENT OF BIOLOGY, FACULTY OF NATURAL SCIENCES, KONSTANTIN PRESLAVSKY UNIVERSITY OF SHUMEN, SHUMEN 9712,115, UNIVERSITETSKA STR., E-MAIL: p.todorova@shu.bg

DEPARTMENT OF BIOLOGY, FACULTY OF NATURAL SCIENCES, KONSTANTIN PRESLAVSKY UNIVERSITY OF SHUMEN, SHUMEN 9712,115, UNIVERSITETSKA STR., E-MAIL: p.todorova@shu.bg

Stephany Toschkova, DEPARTMENT OF PHYSICS AND ASTRONOMY, FACULTY OF NATURAL SCIENCES, KONSTANTIN PRESLAVSKY UNIVERSITY OF SHUMEN, SHUMEN 9712,115, UNIVERSITETSKA STR., E-MAIL: s.toshkova@shu.bg

DEPARTMENT OF PHYSICS AND ASTRONOMY, FACULTY OF NATURAL SCIENCES, KONSTANTIN PRESLAVSKY UNIVERSITY OF SHUMEN, SHUMEN 9712,115, UNIVERSITETSKA STR., E-MAIL: s.toshkova@shu.bg

References

Andrady, AL., Microplastics in the marine environment. Marine Pollution Bulletin, 62 (2011): 1596–1605. https://doi.org/10.1016/j.marpo lbul.2011.05.030.

Andrady, AL., & Neal, MA., Applications and societal benefits of plastics. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (2009): 1977–1984. https://doi.org/10.1098/rstb.2008.0304.

Atugoda, T., Wijesekara, H., Werellagama, D. R. I. B., Jinadasa, K. B. S. N., Bolan, N. S., & Vithanage, M. Adsorptive interaction of antibiotic ciprofloxacin on polyethylene microplastics: Implications for vector transport in water. Environmental Technology & Innovation, 19 (2020): 100971. https://doi.org/10.1016/j.eti.2020.100971.

Barber, I., & Huntingford, F.A. The effect of Schistocephalus solidus (Cestoda: Pseudophyllidea) on the foraging and shoaling behaviour of three-spined sticklebacks, Gasterosteus aculeatus. Behaviour, 132 (1995): 1223–1240. https://doi.org/10.1163/15685 3995X 00540.

Barber, I., Svensson, P., & Walker, P. Behavioural responses to simulated avian predation in female three spined sticklebacks: The effect of experimental Schistocephalus solidus infections. Behaviour, 141 (2004): 1425–1440.

Barnes, D. K. A., Galgani, F., Thompson, R. C., & Barlaz, M. Accumulation and fragmentation of plastic debris in global envi ronments. Philosophical Transactions of the Royal Society B: Biological Sciences, 364 (2009): 1985–1998. https://doi.org/10.1098/rstb.2008.0205.

Bondelind, M., Sokolova, E., Nguyen, A., Karlsson, D., Karlsson, A., & Björklund, K. Hydrodynamic modelling of traffic-related microplastics discharged with stormwater into the Göta River in Sweden. Environmental Science and Pollution Research, 27 (2020): 1–13. https://doi.org/10.1007/s1135 6-020-08637 -z.

Britton, J. R., & Andreou, D. Parasitism as a driver of trophic niche specialisation. Trends in Parasitology, 32 (2016): 437–445. https://doi. org/10.1016/j.pt.2016.02.007.

Collard, F., Gilbert, B., Eppe, G., Roos, L., Compère, P., Das, K., & Parmentier, E. Morphology of the filtration apparatus of three planktivorous fishes and relation with ingested anthropo genic particles. Marine Pollution Bulletin, 116 (2017): 182–191. https://doi. org/10.1016/j.marpo lbul.2016.12.067.

Dodds, W. K., Perkin, J. S., & Gerken, J. E. Human impact on freshwater ecosystem services: A global perspective. Environmental Science and Technology, 47 (2013): 9061–9068. https://doi.org/10.1021/ es402 1052

Duan, Z., Duan, X., Zhao, S., Wang, X., Wang, J., Liu, Y., Peng, Y., Gong, Z., & Wang, L. Barrier function of zebrafish embryonic chorions against microplastics and nanoplastics and its impact on embryo de velopment. Journal of Hazardous Materials, 395 (2020): 122621. https://doi. org/10.1016/j.jhazm at.2020.122621.

Galloway, T. S., Cole, M., & Lewis, C. Interactions of microplas tic debris throughout the marine ecosystem. Nature Ecology and Evolution, 1 (2017): 1–8. https://doi.org/10.1038/s4155 9-017-0116.

Godoy, V., Martín-Lara, M. A., Calero, M., & Blázquez, G. Physical chemical characterization of microplastics present in some exfoliat ing products from Spain. Marine Pollution Bulletin, 139 (2019): 91–99. https:// doi.org/10.1016/j.marpo lbul.2018.12.026.

Gouin, T. Towards improved understanding of the ingestion and trophic transfer of microplastic particles - Critical review and impli cations for future research. Environmental Toxicology and Chemistry, 39 (2020): 1119–1137. https://doi.org/10.1002/etc.4718.

Grigorakis, S., Mason, S. A., & Drouillard, K. G. Determination of the gut retention of plastic microbeads and microfibers in gold fish (Carassius auratus). Chemosphere, 169 (2017): 233–238. https://doi. org/10.1016/j.chemo sphere.2016.11.055.

Grill, G., Lehner, B., Thieme, M., Geenen, B., Tickner, D., Antonelli, F., Babu, S., Borrelli, P., Cheng, L., Crochetiere, H., Ehalt Macedo, H., Filgueiras, R., Goichot, M., Higgins, J., Hogan, Z., Lip, B., McClain, M. E., Meng, J., Mulligan, M., … Zarfl, C. Mapping the world’s free-flowing rivers. Nature, 569 (2019): 215–221. https://doi.org/10.1038/ s4158 6-019-1111-9.

Guerranti, C., Martellini, T., Perra, G., Scopetani, C., & Cincinelli, A. Microplastics in cosmetics: Environmental issues and needs for global bans. Environmental Toxicology and Pharmacology, 68 (2019): 75 -79. https://doi.org/10.1016/j.etap.2019.03.007.

Gunaalan, K., Fabbri, E., & Capolupo, M. The hidden threat of plastic leachates: A critical review on their impacts on aquatic or ganisms. Water Research, 184 (2020): 116170. https://doi.org/10.1016/j. watres.2020.116170.

Hoang, T. C., & Felix-Kim, M. Microplastic consumption and ex cretion by fathead minnows (Pimephales promelas): Influence of parti cles size and body shape of fish. Science of the Total Environment, 704 (2020): 135433. https://doi.org/10.1016/j.scito tenv.2019.135433

Hurt, R., O’Reilly, C. M., & Perry, W. L. Microplastic prev alence in two fish species in two U.S. reservoirs. Limnology and Oceanography Letters, 5 (2020): 147–153. https://doi.org/10.1002/ lol2.10140.

Huuskonen, H., Subiron i Folguera, J., Kortet, R., Akkanen, J., Vainikka, A., Janhunen, M., & Kekäläinen, J. Do whitefish (Coregonus lavaretus) larvae show adaptive variation in the avoidance of micro plastic ingestion? Environmental Pollution, 262 (2020): 114353, https://doi. org/10.1016/j.envpol.2020.114353.

Jabeen, K., Su, L., Li, J., Yang, D., Tong, C., Mu, J., & Shi, H. Microplastics and mesoplastics in fish from coastal and fresh wa ters of China. Environmental Pollution, 221 (2017): 141–149. https://doi. org/10.1016/j.envpol.2016.11.055.

Jâms, I. B., Windsor, F. M., Poudevigne-Durance, T., Ormerod, S. J., & Durance, I. Estimating the size distribution of plastics in gested by animals. Nature Communications, 11 (2020): 1594. https://doi. o r g / 1 0 . 1 0 3 8 / s 4 1 4 67- 0 2 0-1 5 4 0 6- 6.

Jobling, M. The influences of feeding on the metabolic rate of fishes: A short review. Journal of Fish Biology, 18 (1981): 385–400. https:// doi.org/10.1111/j.1095-8649.1981.tb037 80.x.

Kalčíková, G. Aquatic vascular plants – A forgotten piece of na ture in microplastic research. Environmental Pollution, 262 (2020): 114354. https://doi.org/10.1016/j.envpol.2020.114354.

Kim, S. W., Chae, Y., Kim, D., & An, Y. J. Zebrafish can recognize microplastics as inedible materials: Quantitative evidence of inges tion behavior. Science of the Total Environment, 649 (2019): 156–162. https:// doi.org/10.1016/j.scito tenv.2018.08.310.

Kundungal, H., Gangarapu, M., Sarangapani, S., Patchaiyappan, A., & Devipriya, S. P. Efficient biodegradation of polyethylene (HDPE) waste by the plastic-eating lesser waxworm (Achroia grisella). Environmental Science and Pollution Research, 26 (2019): 18509–18519. https://doi.org/10.1007/s1135 6-019-05038 -9.

Li, J., Liu, H., & Paul Chen, J. Microplastics in freshwater systems: A review on occurrence, environmental effects, and methods for microplastics detection. Water Research, 137 (2018): 362–374. https://doi. org/10.1016/j.watres.2017.12.056.

Limonta, G., Mancia, A., Benkhalqui, A., Bertolucci, C., Abelli, L., Fossi, M. C., & Panti, C. Microplastics induce transcriptional changes, immune response and behavioral alterations in adult zebrafish. Scientific Reports, 9 (2019): 1–11. https://doi.org/10.1038/s4159 8-019 5 2 2 9 2- 5.

Noble, R. A. A., Cowx, I. G., Goffaux, D., & Kestemont, P. Assessing the health of European rivers using functional ecological guilds of fish communities: Standardising spe cies classification and approaches to metric selection. Fisheries Management and Ecology, 14 (2007): 381–392. https://doi. org/10.1111/j.1365-2400.2007.00575.x.

Pannetier, P., Morin, B., Le Bihanic, F., Dubreil, L., Clérandeau, C., Chouvellon, F., Van Arkel, K., Danion, M., & Cachot, J. Environmental samples of microplastics induce significant toxic ef fects in fish larvae. Environment International, 134 (2020): 105047. https:// doi.org/10.1016/j.envint.2019.105047.

Park, T. J., Lee, S. H., Lee, M. S., Lee, J. K., Lee, S. H., & Zoh, K. D. Occurrence of microplastics in the Han River and riverine fish in South Korea. Science of the Total Environment, 708 (2020): 134535. https:// doi.org/10.1016/j.scito tenv.2019.134535.

Pegado, T. S. E. S., Schmid, K., Winemiller, K. O., Chelazzi, D., Cincinelli, A., Dei, L., & Giarrizzo, T. First evidence of microplas tic ingestion by fishes from the Amazon River estuary. MarinePollution Bulletin, 133 (2018): 814–821. https://doi.org/10.1016/j.marpo lbul.2018.06.035.

Procter, J., Hopkins, F. E., Fileman, E. S., & Lindeque, P. K. Smells good enough to eat: Dimethyl sulfide (DMS) enhances copepod in gestion of microplastics. Marine Pollution Bulletin, 138 (2019): 1–6. https:// doi.org/10.1016/j.marpo lbul.2018.11.014.

Qiang, L., & Cheng, J. Exposure to microplastics decreases swim ming competence in larval zebrafish (Danio rerio). Ecotoxicology and Environmental Safety, 176 (2019): 226–233. https://doi.org/10.1016/j. ecoenv.2019.03.088.

Qiao, R., Lu, K., Deng, Y., Ren, H., & Zhang, Y. Combined ef fects of polystyrene microplastics and natural organic matter on the accumulation and toxicity of copper in zebrafish. Science of the Total Environment, 682 (2019): 128–137. https://doi.org/10.1016/j.scito tenv.2019.05.163.

Raddadi, N., & Fava, F. Biodegradation of oil-based plastics in the environment: Existing knowledge and needs of research and inno vation. Science of the Total Environment, 679 (2019): 148–158. https://doi. org/10.1016/j.scito tenv.2019.04.419.

Ribeiro, F., O’Brien, J. W., Galloway, T., & Thomas, K. V. Accumulation and fate of nano- and micro-plastics and associated contaminants in organisms. TrAC - Trends in Analytical Chemistry, 111 (2019): 139–147. https://doi.org/10.1016/j.trac.2018.12.010.

Roch, S., Friedrich, C., & Brinker, A. Uptake routes of microplas tics in fishes: Practical and theoretical approaches to test existing theories. Scientific Reports, 10 (2020): 1–12. https://doi.org/10.1038/s4159 8-020-60630 -1.

Roch, S., Walter, T., Ittner, L. D., Friedrich, C., & Brinker, A. A systematic study of the microplastic burden in freshwater fishes of south-western Germany - Are we searching at the right scale? Science of the Total Environment, 689 (2019): 1001–1011. https://doi.org/10.1016/j. scito tenv.2019.06.404.

Rodrigues, M. O., Abrantes, N., Gonçalves, F. J. M., Nogueira, H., Marques, J. C., & Gonçalves, A. M. M. Impacts of plastic products used in daily life on the environment and human health: What is known? Environmental Toxicology and Pharmacology, 72 (2019): 103239, https://doi. org/10.1016/j.etap.2019.103239.

Ryan, M. G., Watkins, L., & Walter, M. T. Hudson River ju venile blueback herring avoid ingesting microplastics. Marine Pollution Bulletin, 146 (2019): 935–939. https://doi.org/10.1016/j.marpo lbul.2019.07.004.

Slootmaekers, B., Catarci Carteny, C., Belpaire, C., Saverwyns, S., Fremout, W., Blust, R., & Bervoets, L. Microplastic contam ination in gudgeons (Gobio gobio) from Flemish rivers (Belgium). Environmental Pollution, 244 (2019): 675–684. https://doi.org/10.1016/j. envpol.2018.09.136.

Song, J., Hou, C., Zhou, Y., Liu, Q., Wu, X., Wang, Y., & Yi, Y. The flowing of microplastics was accelerated under the influence of artificial flood generated by hydropower station. Journal of Cleaner Production, 255 (2020): 120174. https://doi.org/10.1016/j.jclep ro.2020.120174.

Su, L., Deng, H., Li, B., Chen, Q., Pettigrove, V., Wu, C., & Shi, H. The occurrence of microplastic in specific organs in commercially caught fishes from coast and estuary area of east China. Journal of Hazardous Materials, 365 (2019): 716–724. https://doi.org/10.1016/j.jhazm at.2018.11.024.

Sun, B., Hu, Y., Cheng, H., & Tao, S. Releases of brominated flame retardants (BFRs) from microplastics in aqueous medium: Kinetics and molecular-size dependence of diffusion. Water Research, 151 (2019): 215–225. https://doi.org/10.1016/j.watres.2018.12.017.

Wu, P., Tang, Y., Jin, H., Song, Y., Liu, Y., & Cai, Z. Consequential fate of bisphenol-attached PVC microplastics in water and simulated intestinal fluids. Environmental Science and Ecotechnology, 2 (2020): 100027. https://doi.org/10.1016/j.ese.2020.100027.

Yang, H., Xiong, H., Mi, K., Xue, W., Wei, W., & Zhang, Y. Toxicity comparison of nano-sized and micron-sized microplastics to gold fish Carassius auratus larvae. Journal of Hazardous Materials, 388 (2020): 122058. https://doi.org/10.1016/j.jhazm at.2020.122058.

Downloads

Published

13.11.2025

How to Cite

Todorova, P. ., & Toschkova, S. . (2025). MICROPLASTS IN FRESHWATER FISH – PROBLEMS AND CHALLENGES: MICROPLASTS IN FRESHWATER FISH – PROBLEMS AND CHALLENGES. JOURNAL SCIENTIFIC AND APPLIED RESEARCH, 28(1), 120–130. https://doi.org/10.46687/jsar.v28i1.430