LATIN HYPERCUBE AND IMPORTANCE SAMPLING ALGORITHMS FOR MULTIDIMENSIONAL INTEGRALS

LATIN HYPERCUBE AND IMPORTANCE SAMPLING ALGORITHMS FOR MULTIDIMENSIONAL INTEGRALS

Authors

  • Venelin Todorov Bulgarian Academy of Sciences, Institute of Mathematics and Informatics and Institute of Inormation and Communication Technologies: Sofia, BG
  • Valerij Dzurov ROUSSE UNIVERSITY ”ANGEL KANCHEV”
  • Petar Stojanov ROUSSE UNIVERSITY ”ANGEL KANCHEV”
  • Angel Angelov ROUSSE UNIVERSITY ”ANGEL KANCHEV”

DOI:

https://doi.org/10.46687/jsar.v10i1.201

Keywords:

Monte Carlo algorithms, multidimensional integrals, Latin hypercube sampling, Importance sampling

Abstract

Monte Carlo method is the only viable method for high-dimensional problems since its convergence is independent of the dimension. In this paper we implement and analyze the computational complexity of the Latin hypercube sampling algorithm. We compare the results with Importance sampling algorithm which is the most widely used variance reduction Monte Carlo method. We show that the Latin hypercube sampling has some advantageous over the importance sampling technique.

Author Biographies

Venelin Todorov, Bulgarian Academy of Sciences, Institute of Mathematics and Informatics and Institute of Inormation and Communication Technologies: Sofia, BG

Bulgarian Academy of Sciences, Institute of Mathematics and Informatics and Institute of Inormation and Communication Technologies: Sofia, BG

ORCID iD icon https://orcid.org/0000-0001-7134-5901

Valerij Dzurov, ROUSSE UNIVERSITY ”ANGEL KANCHEV”

ROUSSE UNIVERSITY ”ANGEL KANCHEV”

Petar Stojanov, ROUSSE UNIVERSITY ”ANGEL KANCHEV”

ROUSSE UNIVERSITY ”ANGEL KANCHEV”

Angel Angelov, ROUSSE UNIVERSITY ”ANGEL KANCHEV”

ROUSSE UNIVERSITY ”ANGEL KANCHEV”

Downloads

Published

18.03.2023

How to Cite

Todorov, V. ., Dzurov, V. ., Stojanov, P. ., & Angelov, A. . (2023). LATIN HYPERCUBE AND IMPORTANCE SAMPLING ALGORITHMS FOR MULTIDIMENSIONAL INTEGRALS: LATIN HYPERCUBE AND IMPORTANCE SAMPLING ALGORITHMS FOR MULTIDIMENSIONAL INTEGRALS. JOURNAL SCIENTIFIC AND APPLIED RESEARCH, 10(1), 17–23. https://doi.org/10.46687/jsar.v10i1.201

Most read articles by the same author(s)